US0094.93695B2 (12) United States Patent (10) Patent No.: US 9,493,695 B2 Ram et al. (45) Date of Patent: Nov. 15, 2016 (54) METHOD OF ENCAPSULATING A PHASE 5,945,217 A * 8/1999 Hanrahan ..................... 428,389 CHANGE MATERAL WITH A METAL 6,147,337 A * 1 1/2000 Besser .......................... 219,730 6,197.415 B1 3/2001 Holman OXDE 7,896,953 B1* 3/2011 Goswami et al. .............. 95,139 2002/0105108 A1* 8, 2002 Hartmann et al. ... 264,140 (71) Applicants: Manoj Kumar Ram, Palm Harbor, FL 2003/0224186 A1* 12/2003 Feng et al.......... ... 428.447 (US); Chand K. Jotshi, Gainesville, FL 2004/0251 122 A1* 12/2004 Goswami .... ... 204,157.3 2006, O254762 A1* 11, 2006 Tao et al. .... 165,177 (US); Elias K. Stefanakos, Tampa, FL 2007/0202289 A1 8/2007 Kranz et al. .................... 428/43 (US); Dharendra Yogi Goswami, 2008, OOO8858 A1 1/2008 Hong et al. Tampa, FL (US) 2008/023O2O3 A1* 9/2008 Christ et al. .................... 165/10 2009, 0229749 A1* 9, 2009 Teel ............... ... 156,310 (72) Inventors: Manoj Kumar Ram, Palm Harbor, FL 2009/0294094 A1* 12/2009 Suzuki et al. .................. 165/10 (US); Chand K. Jotshi, Gainesville, FL 2011 0008536 A1 1/2011. Oh ..................... 427,213.31 2013/0105106 A1* 5, 2013 Goswami et al. .............. 165/10 (US); Elias K. Stefanakos, Tampa, FL 2013/0192792 A1* 8, 2013 Krakow et al. ................. 165/10 (US); Dharendra Yogi Goswami, 2014/O197355 A1 7, 2014 Ram et al. ...................... 252/75 Tampa, FL (US) FOREIGN PATENT DOCUMENTS (73) Assignee: University of South Florida, Tampa, FL (US) CA 2423123 A1 * 3, 2002 CA 2785256 A1 * 7, 2011 (*) Notice: Subject to any disclaimer, the term of this WO WO O224992 A1 * 3, 2002 patent is extended or adjusted under 35 U.S.C. 154(b) by 117 days. OTHER PUBLICATIONS (21) Appl. No.: 14/159,874 Agyenim, et al., 2010, "A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy (22) Filed: Jan. 21, 2014 storage systems (LHTESS).” Renewable and Sustainable Energy Reviews, 14(2), pp. 615-628. (65) Prior Publication Data Al-Jandal and Sayigh, 1994, “Thermal performance characteristics US 2014/O197355A1 Jul. 17, 2014 of STC system with Phase Change Storage.” Renewable Energy, 5(1-4), pp. 390-399. Baran and Sari, 2003, “Phase change and heat transfer character Related U.S. Application Data istics of a eutectic mixture of palmitic and Stearic acids as PCM in (63) Continuation of application No. a latent heat storage system.' Energy Conversion and Management, PCT/US2012/047165, filed on Jul. 18, 2012. 44(20), pp. 3227-3246. (Continued) (60) Provisional application No. 61/508,896, filed on Jul. 18, 2011. Primary Examiner — Mark Eashoo (51) Int. Cl. Assistant Examiner — M. Reza Asdjodi C09K 5/06 (2006.01) (74) Attorney, Agent, or Firm — Robert J. Varkonyi; C08G 73/10 (2006.01) Smith & Hopen, P.A. COSL 79/08 (2006.01) CSK 3/08 (2006.01) CSK 3/10 (2006.01) (57) ABSTRACT C08K 3/16 (2006.01) COSR 3/28 (2006.01) Storage systems based on latent heat storage have high (52) U.S. Cl. energy storage density, which reduces the footprint of the CPC ........... C09K5/063 (2013.01); C08G 73/1035 system and the cost. However, phase change materials (2013.01); C08K 3/08 (2013.01); C08K 3/10 (PCMs), such as NaNO, NaCl, KNO, have very low (2013.01); C08K 3/16 (2013.01); C08L 79/08 thermal conductivities. To enhave the storage of PCMs. (2013.01); C08K 3/28 (2013.01); C08K macroencapsulation of PCMS was performed using a metal 2003/0862 (2013.01) oxide. Such as SiO2 or a graphene-SiO2, over polyimide (58) Field of Classification Search coated or nickel-embedded, polyimide-coated pellets The CPC ...................................................... CO9K 5/063 macro encapsulation provides a self-supporting structure, USPC ................................. 252/75; 427/385.5, 294 enhances the heat transfer rate, and provides a cost effective See application file for complete search history. and reliable solution for thermal energy storage for use in solar thermal power plants. NaNO was selected for thermal (56) References Cited storage in a temperature range of 300° C. to 500° C. The PCM was encapsulated in a metal oxide cell using self U.S. PATENT DOCUMENTS assembly reactions, hydrolysis, and simultaneous chemical 4,708,812 A * 11/1987 Hatfield .......................... 252/70 oxidation at various temperatures. 5,687,706 A * 11/1997 Goswami et al. 126,263.01 5,694,515 A * 12/1997 Goswami et al. ... 392/.480 5,722,482 A * 3/1998 Buckley .......................... 165/10 14 Claims, 15 Drawing Sheets US 9,493.695 B2 Page 2 (56) References Cited Medrano, et al., 2010, "State of the art on high-temperature thermal energy storage for power generation. Part 2—Case studies,” Renew able and Sustainable Energy Reviews, 14(1), pp. 56-72. OTHER PUBLICATIONS Morrison and Abdel-Khalik, 1978, “Effects of phase-change energy Bauer, et al., 2012, “Characterization of Sodium Nitrate as Phase storage on the performance of air-based and liquid-based solar Change Material.” International Journal of Thermophysics, 33(1), heating systems.” Solar Energy, 20(1), pp. 57-67. pp. 91-104. Rabin, et al., 1995, “Integrated solar collector storage system based Cabeza, et al., 2011, “Materials used as PCM in thermal energy on a Salt-hydrate phase-change material.” Solar Energy, 55(6), pp. storage in buildings: A review, Renewable and Sustainable Energy 435-444. Reviews, 15(3), pp. 1675-1695. Regin, et al., 2008, “Heat transfer characteristics of thermal energy Chou, et al., 2002, "Organic-inorganic sol-gel coating for corrosion storage system using PCM capsules: A review.” Renewable and protection of stainless steel.” Journal of Materials Science Letters, Sustainable Energy Reviews, 12(9), pp. 2438-2458. 21(3), pp. 251-255. Tyagi, et al., 2011, “Development of phase change materials based Farid, et al., 2004, "A review on phase change energy storage: microencapsulated technology for buildings: A review.” Renewable materials and applications,” Energy Conversion and Management, 45(9-10), pp. 1597-1615. and Sustainable Energy Reviews, 15(2), pp. 1373-1391. Fouda, et al., 1984, “Solar storage systems using Salt hydrate latent Velraj. et al., 1999, "Heat Transfer Enhancement in a Latent Heat heat and direct contact heat exchange—II Characteristics of pilot Storage System.” Solar Energy, 65(3), pp. 171-180. system operating with sodium Sulphate solution.” Solar Energy, Zalba, et al., 2003, “Review on thermal energy storage with phase 32(1), pp. 57-65. change: materials, heat transfer analysis and applications. Applied Hawlader, and Zhu, 2000, "Preparation and Evaluation of a Novel Thermal Engineering, 23(3), pp. 251-283. Solar Storage Material: Microencapsulated Paraffin.” International International Search Report for International Application No. PCT/ Journal of Solar Energy, 20(4), pp. 227-238. US2012/047165, filing date of Jul. 18, 2012, with a mailing date of Jegadheeswaran and Pohekar, 2009, "Performance enhancement in Jan. 25, 2013. latent heat thermal storage system: A review.” Renewable and Sustainable Energy Reviews, 13(9), pp. 2225-2244. Cai, et al., Novelnanocomposite materials for advanced Li-ion Jotshi, et al., 1992, "Solar thermal energy storage in phase change rechargeable batteries. Materials. 2009; 2:1205-1238. materials.” SOLAR 92: American Solar Energy Society (ASES) Wu, et al., Graphene/metal oxide composite electrode materials for Annual Conference Cocoa Beach, FL, pp. 174-179. energy storage. Nano Energy. 2012, 1:107-131. Kenisarin and Mahkamov, 2007. "Solar energy storage using phase Janz, et al., 1979. “Physical properties data compilations relevant to change materials,” Renewable and Sustainable Energy Reviews, energy storage. II. Molten salts: data on single and multi-component 11 (9), pp. 1913-1965. salt systems.” No. NSRDS-NBS-61(Pt.2) 420p. Li, et al. 2012, “Fabrication and morphological characterization of International Preliminary Report on Patentability for International microencapsulated phase change materials (MicroPCMs) and Application No. PCT/US2012 1047165, filing date Jul. 18, 2012. macrocapsules containing MicroPCMs for thermal energy storage.” Energy, 38(1), pp. 249-254. * cited by examiner U.S. Patent Nov. 15, 2016 Sheet 1 of 15 US 9,493,695 B2 S. -solventfcuring O-C-N-R-N-C-O-- O | O ~ps a O O pyromeliitic dianhydride ON- to NCO-O-CH3C-NCO O Nco R isaway N C NCO isophorone diisocyanate methylene dipheny toluene diisocyanate 4,4'-diisocyanate Fig. 1. U.S. Patent Nov. 15, 2016 Sheet 2 of 15 US 9,493,695 B2 st H. H.) H. Hay (Eily ti: HN /EN O sia b.Sis o. sis3 HO- tio-tios HO-Hos CIOH-rt Coll:f Cicilf C COO of OCoo... * 'a to*Y. ojo:-- o in.O coSl 3Ni SO / S,\ 'so, o Sisio "" o O 's o, 'so O or A s...& 's o, o st O , V 1CO-CO ; - 16.-HO,-NO. c. OH : 6 C -HO,-NO; Col. ^c'OHClOH.OH. cf. E. H. -NO. Ho-Ho- tio- -NO to Yo Yo c)o^:/ Oaof "Yo --Yo stwn- '-sif2: s/ ofS 'o sySt ofS 'o wO. O.N O O CRC N / -CO --FC -HO SiO, Fig. 2. U.S. Patent Nov. 15, 2016 Sheet 3 of 15 US 9,493,695 B2 s: v . /8's -(32. --CC, - O -OS ( to Sior-SSS'''“OS :CO -N92,No. “N,No, HCOOH,it's iO-Si-Siros-2,3- Air 'R Reign (3,031No. or "Rosio-gos's ov () N *R-Eiso ( , telesated at >300°C00°C oi o o o H.O.K.3 o.. r N-R Saif N to R ES 8 FIQ is:Hoosi" '. Qiq D gossie". Olso: S-O-Sbro, Fig. 3. arrayaraaaaaaaaaaaaaaaaaaaaaaaaaaaaaas 00 2.08 300 400 50 6.0-0 7.00 800 9.00 (3.00 keV Fig.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages26 Page
-
File Size-