Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert Schoelkopf Yale University ‘Circuit QED’ Blais et al. Phys. Rev. A 69, 062320 (2004) Wallraff et al. [cond-mat/0407325] Nature (in press) 2 Atoms Coupled to Photons 2s 2p Irreversible spontaneous decay into the photon continuum: 2 ps→+1 γ T1 ∼ 1 ns 1s Vacuum Fluctuations: (Virtual photon emission and reabsorption) Lamb shift lifts 1s 2p degeneracy Cavity QED: What happens if we trap the photons as discrete modes inside a cavity? 3 Outline Cavity QED in the AMO Community Optical Microwave Circuit QED: atoms with wires attached What is the cavity? What is the ‘atom’? Practical advantages Recent Experimental Results Quantum optics with an electrical circuit Future Directions 4 Cavity Quantum Electrodynamics (cQED) 2g = vacuum Rabi freq. κ = cavity decay rate γ = “transverse” decay rate t = transit time Strong Coupling = g > κ , γ , 1/t Jaynes-Cummings Hamiltonian E E Hˆ =+ω (aa††+ 1 ) el σσˆˆ− J −g(aσ−++σa) r 2 2 xz2 Electric dipole Quantized Field 2-level system Interaction 5 Cavity QED: Resonant Case ω = ω r 01 with interaction eigenstates are: 1 +=,0 ( ↑,1 +↓,0 ) 2 1 −=,0 ()↑,1 −↓,0 2 vacuum Rabi oscillations “dressed state ladders” 6 Microwave cQED with Rydberg Atoms vacuum Rabi oscillations beam of atoms; prepare in |e> 3-d super- conducting observe dependence of atom final cavity (50 GHz) state on time spent in cavity measure atomic state, or … Review: S. Haroche et al., Rev. Mod. Phys. 73 565 (2001) 7 cQED at Optical Frequencies State of photons is detected, not atoms. … measure changes in transmission of optical cavity 8 (Caltech group H. J. Kimble, H. Mabuchi) A Circuit Analog for Cavity QED 2g = vacuum Rabi freq. κ = cavity decay rate γ = “transverse” decay rate out cm 2.5 transmission λ ~ line “cavity” L = Cross-section of mode: DC + B 5 µm E 6 GHz in - ++ - Lumped element equivalent circuit 9 Blais, Huang, Wallraff, SMG & RS, PRA 2004 10 µm Advantages of 1d Cavity and Artificial Atom gd= iE/ Vacuum fields: Transition dipole: zero-point energy confined de~40,000 a in < 10-6 cubic wavelengths 0 10 x larger than E ~ 0.25 V/m vs. ~ 1 mV/m for 3-d Rydberg atom cm 2.5 λ ~ L = 10 µm Cooper-pair box “atom” 10 Resonator as Harmonic Oscillator 1122 L r C H =+()LI CV r 22L Φ ≡ LI = momentum ˆ † 1 V = coordinate Hacavity =+ωr ()a2 † VV=+RMS ()aa 112 ⎛⎞1 CV00= ⎜⎟ω 22⎝⎠2 ω V = r ∼ 12− µV RMS 2C 11 Implementation of Cavities for cQED Superconducting coplanar waveguide transmission line Q > 600,000 @ 0.025 K Optical lithography 1 cm at Yale Niobium films gap = mirror 6 GHz: ω = 300mK nmγ 1@20K • Internal losses negligible – Q dominated by coupling 12 The Chip for Circuit QED Nb Nb the ‘atom’ Nb no wires attached to qubit! 13 Superconducting Tunnel Junction as a Covalently Bonded Diatomic ‘Molecule’ (simplified view) N +1 pairs aluminum island N pairs N ∼ 108 tunnel barrier ∼ 1mµ N pairs aluminum island N +1 pairs Cooper Pair Josephson Tunneling Splits the Bonding and Anti-bonding ‘Molecular Orbitals’ anti-bonding bonding 14 Bonding Anti-bonding Splitting 8 1 10 +1 108 ψ =±8 8 ()10 10 +1 ± 2 EEanti-bonding −=bonding EJ ∼∼7 GHz 0.3 K Josephson coupling ↑= bonding E H =− J σ z ↓= anti-bonding 2 15 Dipole Moment of the Cooper-Pair Box (determines polarizability) Vg -- L = 10 µm C1 ---- 1 nm EL=Vg / C ++++ 2 C Vg ++ 3 0 1/C de= (2 )L 2 1/CC12++1/ 1/C3 ↑= bonding EJ z d x H =− σ − Vgσ de~2 -µm ↓= anti-bonding 2 L 16 Energy, Charge, and Capacitance of the CPB ↓ E E zxd J HV=− J σ − σ ↑ g Energy 2 L ↓ no charge dE signal Q = charge Charge ↑ dV ↑ dQ polarizability is C = state dependent ↓ dV Capacitance CV / e 01 2 gg deg. pt. = coherence sweet spot 17 Using the cavity to measure the state of the ‘atom’ E d † HV=− J σ zx− σ VV=+V ()a+a 2 L dc RMS (2e) 1/C2 gV= RMS 1/CC12++1/ 1/C3 V 0 State dependent polarizability of ‘atom’ pulls the cavity frequency18 Dispersive Regime Large Detuning of Atom from Cavity ∆=ω01 −ωr g 19 ω01 z ††− + Ha=− σ +ωσR a+g()a+aσ 2 Large ⎧ g ⎛⎞+ † − ⎫ Detuning of Ua=−exp ⎨ ⎜⎟σσa⎬ Atom from ⎩⎭∆ ⎝⎠ Cavity † Heff = UHU ∆ =−ω01 ωr g 22 ⎛⎞gg† 1⎛⎞ Haeff ≈−⎜⎟ωrzσωa−⎜01 +⎟σz ⎝⎠∆∆2⎝⎠ cavity freq. shift Lamb shift 20 QND : [Heff ,σ z ] = 0 Cavity Transmission Phase Controlled by State of Atom Nb resonator 20 mK ↑ ↓ Linewidth νr = 6.04133 GHz Q = 2πν/κ ~ 10,000 κ=2π x 0.6MHz r κ-1 = 250 ns 21 QND Measurement of Qubit: Dispersive case ν01 ∆ =−2(π ν 01 ν r ) ∆ ν = 6.04133 GHz ν r r EhJ / ∆min ~ 300 MHz (∼ 0.05ν r !) δθκ= 2/g 2 ∆°~5 δθ ~5° min g /π = 5HM z 0 Phase Shift vacuum Rabi frequency 22 Gate Sweep with Qubit Crossing Resonator ∆ = 0 tune qubit thru resonance w/ ν r cavity EhJ / phase shift 0 changes sign at resonance Phase Shift (a.u.) 23 Spectroscopy of Qubit in Cavity Send in 2 frequencies •Readout ν01 •Spectroscopy νr νs Probe (CW) cavity at ν r ↑ 0 -10 Phase ↓ -20 -30 n -40 g Attn (dB) Data -50 1 5.6 5.8 6.0 6.2 6.4 Spectroscopy (CW) Phase at 6.3 GHz near ν01 24 ng Spectrum of Qubit E d HV=− J σ zx− σ 2 L g Vg Cavity Phase EJ Energy Spec Frequency (GHz) 1 nCgg= Vg / e CgVg n = 25 g e Using Cavity to Map Qubit Parameter Space ∆ =−ω01 ωr Transition frequency of qubit Cavity phase shift 2 Φ / Φ 0 ∆ > 0 Φ /Φ 0 ∆ > 0 1 ∆ = 0 Φ0 0 ∆ < 0 ∆ < 0 (GHz) 2e 01 ν 0 1 2 3 4 C V Slice at ∆=0 n = g g g C V e n = g g g e max EEJC~ 6.7 GHz ~ 5.25 GHz 26 Probe Beam at Cavity Frequency Induces ‘Light Shift’ of Atom Frequency 22 ⎛⎞gg† 1⎛⎞ Haeff ≈−⎜⎟ωrzσωa−⎜01 +⎟σz ⎝⎠∆∆2⎝⎠ cavity freq. shift Lamb shift atom ac Stark shift vacuum ac Stark shift (light shift) =×2n cavity pull 11⎛⎞g2 ⎡⎤ Ha≈−ω ††aωσ+2 aa+ eff r ⎜⎟01 ⎢⎥z 22⎝⎠∆ ⎣⎦ 27 Atom ac Stark Shift (Light Shift) Induced by Cavity Photons navg photons 0 50 100 6.2 6.19 20 6.18 GHz Linewidths 0 6.17 Ν 10 450kHz/photon 0 6.16 ΝΝ 6.15 0 0 20 40 60 80 100 RF Power ΜW 28 Measurement Induced Dephasing: back action = quantum noise in the light Shift 11⎛⎞g 2 ⎡⎤ Ha≈−ω ††aωσ+2 aa+ eff r ⎜⎟01 ⎢⎥z 22⎝⎠∆ ⎣⎦ κ − ||τ n fluctuations 2 δτnnˆˆ()δ = ne in photon number 29 Measurement Back Action: Quantum Noise in ac Stark Shift 11⎛⎞g2 ⎡⎤ Ha≈+ω ††aωσ+2 aa+ eff r ⎜⎟01 ⎢⎥z 22⎝⎠∆ ⎣⎦ 1 −+it[(ωϕ01 t)] ψ =↓( +e ↑) 2 2g 2 ⎡ t ⎤ ϕ()tn=+⎢ ∫ dτδnˆ(τ)⎥ ∆ ⎣ 0 ⎦ light shift random dephasing 30 Measurement Back Action: Quantum Noise in ac Stark Shift 2g 2 t δϕτ()td= ∫ δnˆ(τ) ∆ 0 1 − δϕ 2 ()t eeitδϕ () ≈ 2 Assuming gaussian fluctuations 2 2 tt 2 ⎛⎞2g δϕτ()td= ⎜⎟∫∫dτ'δnˆˆ(τ)δn(τ') ⎝⎠∆ 00 31 Measurement Back Action: Quantum Noise in ac Stark Shift Coherent state in driven cavity with damping rate κ κ − ||τ δτnnˆˆ()δ(0)= ne2 τ 32 Measurement Back Action: Quantum Noise in ac Stark Shift 2 2 tt κ −−|'ττ| 2 ⎛⎞2g δϕ ()td= ⎜⎟∫∫τ dτ 'ne2 ⎝⎠∆ 00 2 2 ⎛⎞2g 2 ≈ ⎜⎟nt κt1 ⎝⎠∆ (Gaussian inhomogeneous broadening) 2 ⎛⎞24g 2 ≈ ⎜⎟ntκt1 ⎝⎠∆ κ (phase random walks--phase diffusion) (Lorentzian homogeneous broadening) 33 Qubit Phase Diffusion (weak measurement) 2 2 2 ⎛⎞24g δϕ ()tn≈ ⎜⎟ t ⎝⎠∆ κ 1 2 2 − ϕ 2 ()t ⎡⎤ −itϕ () ⎛⎞2g −Γ t ee==2 exp ⎢⎥−2⎜⎟nκ t=eϕ κ∆ ⎣⎦⎢⎥⎝⎠ 11⎧⎫∞ Γ S(ω) =− Im -i dt eitω e−Γϕt = ϕ ⎨⎬∫ 22 ππ⎩⎭0 ()ω−ω0 +Γϕ Γ∝ϕ n valid for Γϕ κ Measurement induced dephasing rate 34 Qubit Inhomogeneous Broadening (strong measurement) 112 2 −−ϕ 2 ()tt⎡⎤(Γ)2 −itϕ () 12⎛⎞g 2 ϕ ee==22exp ⎢⎥−⎜⎟nt=e 2 ∆ ⎣⎦⎢⎥⎝⎠ Γ∝ϕ n 2 ()ωω− 0 ∞ 1 2 − −Γ()t 2 11⎧⎫it ϕ 2Γ Se(ω) =− Im ⎨⎬-i∫ dt e ω e 2 = ϕ π ⎩⎭0 2π Γϕ Γ∝ϕ n valid for Γϕ κ 35 Measurement Induced Dephasing: back action = quantum noise in the light Shift 11⎛⎞g 2 ⎡⎤ Ha≈−ω ††aωσ+2 aa+ eff r ⎜⎟01 ⎢⎥z 22⎝⎠∆ ⎣⎦ κ − ||τ n fluctuations 2 δτnnˆˆ()δ = ne in photon number Γ∝ϕ n Gaussian Lorentzian Γ∝ϕ n 36 Summary of Dispersive Regime Results Every thing works as predicted except the cavity enhanced lifetime has not been observed. Non-radiative decay channels? ε -glassy losses in oxide barriers loss tangent 2 ∼ 10-4 ε1 -electroacoustic coupling to phonons? (Ioffe, Blatter) 37 Dressed Artificial Atom: Resonant Case ? T ω01 = ωR T 2g γ +κ 2 Fourier transform of Haroche 1 ω /38ω Rabi flopping expt. “vacuum Rabi splitting” R First Observation of Vacuum Rabi Splitting for a Single Atom (on average) Cs atom in an optical cavity photons Thompson, Rempe, & Kimble 199239 First Observation of Vacuum Rabi Splitting in a Superconducting Circuit qubitqubitdetuneddetuned Pprobe =−140 dBm fromfrom cavity cavity = 10−17 W = n ωrκ /2 n ≤ 1 qubit tuned into 2g 2g /2π = 12 MHz resonance 1 1 κ /2π = 0.6 MHz ()qubit + photon ()qubit − photon 2 2 γ /2π = 1 MHz 40 Observing the Avoided Crossing of “Atom” & “Photon” EJr= ω EJr< ω 41 Quantum Computation and NMR of a Single ‘Spin’ Single Spin ½ Quantum Measurement Vds C C C gb Box c ge Vgb Vge SET 42 (After Konrad Lehnert) Quantum control of qubits NMR language z y x microwave pulse 1 Ω1 0 π/2 π pulse pulse free evolution (analogous to gyroscopic precession) NOT NOT43 Rabi Flopping of Qubit Under Continuous Measurement 44 FUTURE DIRECTIONS - strongly non-linear devices for microwave quantum optics - single atom optical bistability - photon `blockade’ - single photon microwave detectors - single photon microwave sources - quantum computation - QND dispersive readout of qubit state via cavity - resonator as ‘bus’ coupling many qubits - cavity enhanced qubit lifetime 45 SUMMARY Cavity Quantum Electrodynamics cQED “circuit QED” Coupling a Superconducting Qubit to a Single Photon -first observation of vacuum Rabi splitting 46 -initial quantum control results Coupling Qubits via Cavity Mode multiple CPB qubits in a cavity Nb Nb 20 µm Nb can integrate multiple qubits in a single cavity,

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    51 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us