Energy Matching Key towards the design of sustainable photovoltaic powered products Sioe Yao KAN Energy Matching Key towards the design of sustainable photovoltaic powered products proefschrift ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus prof. dr. ir. J.T. Fokkema, voorzitter van het College voor Promoties, in het openbaar te verdedigen op dinsdag, 19 december 2006 om 10.00 uur door Sioe Yao KAN elektrotechnisch ingenieur en Diplom-Physiker aan de Universität Stuttgart Geboren te ‘s-Gravenhage Dit proefschrift is goedgekeurd door de promotoren: Prof. dr. ir. J.C. Brezet Prof. dr. W.C. Sinke Samenstelling van de promotiecommissie: Rector Magnificus, voorzitter Prof. dr. ir. J.C. Brezet, Technische Universiteit Delft, promotor Prof. dr. W.C. Sinke, Universiteit Utrecht, promotor Prof. dr. T.B. Johansson, Universiteit Lund, Zweden Prof. dr. J. Schoonman, Technische Universiteit Delft Prof. dr. W.J. Ockels, Technische Universiteit Delft Prof. dr. dr. h.c. M. Grätzel, Ecole Polytechnique Fédéral de Lausanne, Zwitserland Dr. ir. S. Silvester, Technische Universiteit Delft Energy Matching - Key towards the design of sustainable photovoltaic powered products Sioe Yao Kan Thesis Delft University of Technology, Delft, The Netherlands Design for Sustainability Program publication nr. 14 ISBN-10: 90-5155-030-8 ISBN-13: 978-90-5155-030-6 The research was funded by NWO/SenterNovem Stimuleringsprogramma Energieonder- zoek (Stimulation Program Energy Research) Coverdesign and layout by Duygu Keskin Printed by PrintPartners Ipskamp, Rotterdam, The Netherlands Distributed by DfS [email protected] Tel +31 15 278 2738 Fax + 31 15 278 2956 Copyright © by Sioe Yao Kan. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording or otherwise without any written permission from the author. Table of Contents Prologue xiii Acknowledgment xv 1 Introduction and problem definition 1 1.1 Introduction 1 1.2 PV power supplies versus power supplies based on other energy conversion methods 2 1.2.1 General considerations 2 1.2.2 Comparison between the power systems 4 1.3 General overview energy demand and trends of mobile products 6 1.3.1 Digital electronics 6 1.3.2 Emerging technologies 6 1.3.3 Status today 7 1.3.4 Other design issues 8 1.4 PV powered mobile/wireless product designs today and in the coming five years 8 1.4.1 General considerations 8 1.4.2 Renewable energy matching in PV powered products 9 1.4.3 Design integration 10 1.5 Problem definition and research question 10 1.5.1 General 10 1.5.2 Research question and sub-questions 11 1.6 Matching 12 1.6.1 General considerations of matching 12 1.6.2 The energy chain and the energy matching model (EMM) 12 1.6.3 Power matching and energy matching 15 1.6.4 The Figure of Matching (FM) algorithm 16 1.7 Research objective, goals and scope of this dissertation 19 1.7.1 Research Objective and Goals 19 1.7.2 The Scope of this dissertation 19 1.8 Methodology 20 1.9 Outline of this dissertation 21 vii Energy Matching - Key towards the design of sustainable photovoltaic powered products 2 Optimizing photovoltaic (PV) energy conversion systems for mobile/wireless products in outdoor/indoor user contexts 23 2.1 Introduction and general remarks 23 2.2 Characteristics of the user context defined incident light 26 2.2.1 Light Energy, irradiance and illuminance 26 2.2.2 Overview of outdoor light energy sources and spectra 26 2.2.3 Overview of indoor light energy sources and spectra 29 2.2.4 Resume of available incident light energy 33 2.3 Potential photovoltaic power converters performance 34 2.3.1 General PV Review 34 2.3.2 PV output parameters and MPP 34 2.3.3 Overview of photovoltaic cell efficiencies 39 2.3.4 Spectral response of PV cells 44 2.3.5 Résumé of the potential photovoltaic power converter performances 46 2.4 Optimizing the irradiance matching interface (MI:1) 47 2.4.1 The spectral Figure of Matching (MI:1) 47 2.4.2 Minimise shadows on the PV cells by proper design 55 2.4.3 Increase the incident light 57 2.4.4 User context dependent PV power output and the spectral dependent efficiency 57 2.4.5 Résumé on the irradiance matching interface MI:1 57 2.5 Optimizing the PV power output matching interface (MI:2) 58 2.6 Irradiance and PV type dependent power output 59 2.6.1 General Remarks 59 2.6.2 The PV cell power output of one day 59 2.7 Other relevant design aspects 61 2.7.1 General Considerations 61 2.7.2 Curved PV surfaces 61 2.7.3 Colour and PV cells 63 2.7.4 Matching of the user emotional experience options with the PV application 63 2.8 Conclusions 65 3 Mobile/wireless electrical energy storage media 67 3.1 Introduction 67 3.2 Energy storage media characteristics and performance 70 3.2.1 General overview electrical energy storage media 70 3.2.2 Battery characteristics and performance 71 3.2.3 Selecting batteries that match the energy chain of PV powered products 77 3.2.4 Capacitors characteristics and performance 80 3.2.5 Comparing battery and capacitor characteristics 82 viii Table of Contents 3.3 Matching photovoltaic energy converters and energy storage media (MI:2) 84 3.3.1 General 84 3.3.2 Figure of Matching between PV cell and battery 85 3.3.3 Suboptimal energy matching in the PV - battery matching interface (MI:2) 88 3.3.4 Improving the matching between photovoltaic cells and batteries by using capacitors 89 3.4.5 Efficiency of energy transfer from capacitors to Li-Ion batteries 91 3.3.6 Some suggestions for improving the Figure of Matching between PV and battery 93 3.4 Matching energy storage media and energy use in the functional application (MI:3) 94 3.4.1 General 94 3.4.2 Figure of Matching between Battery (storage medium) and energy use in the functional application 94 3.4.3 A suggested solution for improving the Matching between battery and energy use in the functional application with the aid of a capacitor 100 3.5 Other advantages of battery - capacitor combinations 101 3.5.1 General 101 3.5.2 Fast recharge options today 102 3.5.3 Fast and large discharge options in battery - capacitor systems 102 3.6 Conclusions 104 4 Optimal matching in the energy chain 107 4.1 Introduction 107 4.2 Summary of energy matching examples as found in the preceding chapters 109 4.2.1 General considerations 109 4.2.2 Irradiance matching interface (MI:1) 109 4.2.3 Charge energy matching interface (MI:2) 112 4.2.4 The energy use matching interface (MI:3) 113 4.3 Matching parameters outside the energy chain 115 4.3.1 General remarks 115 4.3.2 The construction and embodiment matching 115 4.3.3 Environmental design issues and element matching 116 4.3.4 User context design issues and element matching 117 4.3.5 Standardisation 118 4.4 Overall matching and energy balance in PV powered products 118 4.4.1 General considerations 118 4.4.2 Relating and matching the elements and interfaces in the entire energy chain 120 ix Energy Matching - Key towards the design of sustainable photovoltaic powered products 4.4.3 The PowerQuest tool 122 4.4.4 Design Methodology of PV powered products 126 4.5 Conclusions 126 5 Test cases of mobile/wireless PV powered products 129 5.1 Introduction 129 5.2 Master Graduation project examples at the Delft University of Technology, faculty of Industrial Design Engineering 131 5.2.1 The ‘Backpack’ PV battery charger 131 5.2.2 Solar Rudy and his amazing pupil localizer 135 5.3 Benchmarked existing products 138 5.3.1 The benchmark process 138 5.3.2 The cellular phone powered by a PV battery 139 5.3.3 The universal PV charger ‘Source’ 141 5.4 Test case studies in the framework of the SYN-Energy program 143 5.4.1 General remarks 143 5.4.2 The Solar Mobile Companion 143 5.4.3 The wireless PV mouse 146 5.5 Résumé design steps 148 5.6 Conclusions 150 6 Conclusions and Recommendations 151 6.1 Conclusions 151 6.1.1 General considerations for the conclusions 151 6.1.2 Research question, Energy Matching Model and Figure of Matching algorithm 151 6.1.3 Interface related conclusions 153 6.1.4 Spin-offs to other interfaces outside the energy chain 153 6.2 Design approach and guidelines 153 6.2.1 General approach 154 6.2.2 Energy matching 155 6.2.3 Mechanical physical design aspects 156 6.3 Recommendations for further research 157 6.3.1 Recommendations for the PV and battery suppliers 157 6.3.2 Recommendations for product designers and manufacturers and general research 158 6.3.3 Recommendations for fundamental research 158 Summary 161 Sammenvatting 163 Epilogue 165 Reference List 166 x Table of Contents List of Figures 179 List of Tables 184 Appendix A: Symbols, Quantities and Units used in this dissertation 185 Appendix B: Abbreviations and Acronyms used in this dissertation 186 Appendix C: Basic Units and fundamentals of light energy and photovoltaic conversion 188 Appendix D: Measured lamp spectra 195 Appendix E: PV performance measurement set-up 196 Appendix F: Battery fundamentals 198 Appendix G: Electronic circuit components and diagrams 199 Curriculum Vitae 201 xi Energy Matching - Key towards the design of sustainable photovoltaic powered products xii Prologue Usually one writes a dissertation at the early start of one’s career.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages217 Page
-
File Size-