The Qtspp Theorem

The Qtspp Theorem

The qTSPP Theorem Manuel Kauers RISC on a collaboration with Christoph Koutschan Doron Zeilberger and Tulane Rutgers The qTSPP Theorem Manuel Kauers RISC on a collaboration with Christoph Koutschan Doron Zeilberger and RISC Rutgers Richard Stanley Partitions n n A partition π of size n is a tuple (πi)i=1 ∈ N with n ≥ π1 ≥ π2 ≥···≥ πn. Partitions n n A partition π of size n is a tuple (πi)i=1 ∈ N with n ≥ π1 ≥ π2 ≥···≥ πn. Example: 5 3 3 2 1 0 is a partition of size 6 Partitions n n A partition π of size n is a tuple (πi)i=1 ∈ N with n ≥ π1 ≥ π2 ≥···≥ πn. Example: 5 3 3 2 1 0 is a partition of size 6 ttttt Picture: ttt ttt tt t Plane Partitions n n×n A plane partition π of size n is a matrix ((πi,j))i,j=1 ∈ N with n ≥ πi,1 ≥ πi,2 ≥···≥ πi,n and n ≥ π1,j ≥ π2,j ≥···≥ πn,j for all i and j. Plane Partitions n n×n A plane partition π of size n is a matrix ((πi,j))i,j=1 ∈ N with n ≥ πi,1 ≥ πi,2 ≥···≥ πi,n and n ≥ π1,j ≥ π2,j ≥···≥ πn,j for all i and j. 5 3 3 2 1 0 4 3 3 1 1 0 3 2 1 1 0 0 is a plane partition of size 6 2 2 1 1 0 0 2 1 0 0 0 0 1 1 0 0 0 0 Plane Partitions n n×n A plane partition π of size n is a matrix ((πi,j))i,j=1 ∈ N with n ≥ πi,1 ≥ πi,2 ≥···≥ πi,n and n ≥ π1,j ≥ π2,j ≥···≥ πn,j for all i and j. 5 3 3 2 1 0 4 3 3 1 1 0 3 2 1 1 0 0 2 2 1 1 0 0 2 1 0 0 0 0 1 1 0 0 0 0 Plane Partitions n n×n A plane partition π of size n is a matrix ((πi,j))i,j=1 ∈ N with n ≥ πi,1 ≥ πi,2 ≥···≥ πi,n and n ≥ π1,j ≥ π2,j ≥···≥ πn,j for all i and j. Plane Partitions n n×n A plane partition π of size n is a matrix ((πi,j))i,j=1 ∈ N with n ≥ πi,1 ≥ πi,2 ≥···≥ πi,n and n ≥ π1,j ≥ π2,j ≥···≥ πn,j for all i and j. Symmetric Plane Partitions n A symmetric plane partition π is a plane partition ((πi,j))i,j=1 ∈ n×n N with πi,j = πj,i for all i, j. Symmetric Plane Partitions n A symmetric plane partition π is a plane partition ((πi,j))i,j=1 ∈ n×n N with πi,j = πj,i for all i, j. Symmetric Plane Partitions n A symmetric plane partition π is a plane partition ((πi,j))i,j=1 ∈ n×n N with πi,j = πj,i for all i, j. Symmetric Plane Partitions n A symmetric plane partition π is a plane partition ((πi,j))i,j=1 ∈ n×n N with πi,j = πj,i for all i, j. Symmetric Plane Partitions n A symmetric plane partition π is a plane partition ((πi,j))i,j=1 ∈ n×n N with πi,j = πj,i for all i, j. Totally Symmetric Plane Partitions A totally symmetric plane partition π is a symmetric plane partition whose diagram is symmetric about all three diagonal planes. Totally Symmetric Plane Partitions A totally symmetric plane partition π is a symmetric plane partition whose diagram is symmetric about all three diagonal planes. Totally Symmetric Plane Partitions A totally symmetric plane partition π is a symmetric plane partition whose diagram is symmetric about all three diagonal planes. Totally Symmetric Plane Partitions A totally symmetric plane partition π is a symmetric plane partition whose diagram is symmetric about all three diagonal planes. Totally Symmetric Plane Partitions A totally symmetric plane partition π is a symmetric plane partition whose diagram is symmetric about all three diagonal planes. Totally Symmetric Plane Partitions Theorem: There are i + j + k − 1 i + j + k − 2 1≤i≤j≤k≤n totally symmetric plane partitions of size n. Totally Symmetric Plane Partitions Theorem: There are i + j + k − 1 i + j + k − 2 1≤i≤j≤k≤n totally symmetric plane partitions of size n. 1, 2, 5, 16, 66, 352, 2431, 21760, 252586, 3803648, 74327145, . Totally Symmetric Plane Partitions Theorem: There are i + j + k − 1 i + j + k − 2 1≤i≤j≤k≤n totally symmetric plane partitions of size n. 1, 2, 5, 16, 66, 352, 2431, 21760, 252586, 3803648, 74327145, . Totally Symmetric Plane Partitions Theorem: There are i + j + k − 1 i + j + k − 2 1≤i≤j≤k≤n totally symmetric plane partitions of size n. 1, 2, 5, 16, 66, 352, 2431, 21760, 252586, 3803648, 74327145, . Totally Symmetric Plane Partitions Theorem: There are i + j + k − 1 i + j + k − 2 1≤i≤j≤k≤n totally symmetric plane partitions of size n. 1, 2, 5, 16, 66, 352, 2431, 21760, 252586, 3803648, 74327145, . Totally Symmetric Plane Partitions Theorem: There are i + j + k − 1 i + j + k − 2 1≤i≤j≤k≤n totally symmetric plane partitions of size n. 1, 2, 5, 16, 66, 352, 2431, 21760, 252586, 3803648, 74327145, . Totally Symmetric Plane Partitions making 66 for n = 4. Totally Symmetric Plane Partitions First Proof: J. Stembridge, 1995. Totally Symmetric Plane Partitions First Proof: J. Stembridge, 1995. (without computer) Totally Symmetric Plane Partitions First Proof: J. Stembridge, 1995. (without computer) Second Proof: G. E. Andrews, P. Paule, C. Schneider, 2005. Totally Symmetric Plane Partitions First Proof: J. Stembridge, 1995. (without computer) Second Proof: G. E. Andrews, P. Paule, C. Schneider, 2005. Both proofs rely on Okada’s Lemma: Totally Symmetric Plane Partitions First Proof: J. Stembridge, 1995. (without computer) Second Proof: G. E. Andrews, P. Paule, C. Schneider, 2005. Both proofs rely on Okada’s Lemma: It is sufficient to show i + j + k − 1 2 det((a ))n = (n ≥ 1) i,j i,j=1 i + j + k − 2 1≤i≤j≤k≤n i+j−2 i+j−1 where ai,j = i−1 + i + 2δi,j − δi,j+1. a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7 a1,8 · · · a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7 a2,8 · · · a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7 a3,8 · · · a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7 a4,8 · · · a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7 a5,8 · · · a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 a6,7 a6,8 · · · a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7 a7,8 · · · a8,1 a8,2 a8,3 a8,4 a8,5 a8,6 a8,7 a8,8 · · · a9,1 a9,2 a9,3 a9,4 a9,5 a9,6 a9,7 a9,8 · · · a10,1 a10,2 a10,3 a10,4 a10,5 a10,6 a10,7 a10,8 · · · a11,1 a11,2 a11,3 a11,4 a11,5 a11,6 a11,7 a11,8 · · · a12,1 a12,2 a12,3 a12,4 a12,5 a12,6 a12,7 a12,8 · · · . .. a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7 a1,8 · · · a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7 a2,8 · · · a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7 a3,8 · · · a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7 a4,8 · · · a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7 a5,8 · · · a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 a6,7 a6,8 · · · a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7 a7,8 · · · a8,1 a8,2 a8,3 a8,4 a8,5 a8,6 a8,7 a8,8 · · · a9,1 a9,2 a9,3 a9,4 a9,5 a9,6 a9,7 a9,8 · · · a10,1 a10,2 a10,3 a10,4 a10,5 a10,6 a10,7 a10,8 · · · a11,1 a11,2 a11,3 a11,4 a11,5 a11,6 a11,7 a11,8 · · · a12,1 a12,2 a12,3 a12,4 a12,5 a12,6 a12,7 a12,8 · · · . .. a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7 a1,8 · · · a2,1 a2,2 a2,3 a2,4 a2,5 a2,6 a2,7 a2,8 · · · a3,1 a3,2 a3,3 a3,4 a3,5 a3,6 a3,7 a3,8 · · · a4,1 a4,2 a4,3 a4,4 a4,5 a4,6 a4,7 a4,8 · · · a5,1 a5,2 a5,3 a5,4 a5,5 a5,6 a5,7 a5,8 · · · a6,1 a6,2 a6,3 a6,4 a6,5 a6,6 a6,7 a6,8 · · · a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 a7,7 a7,8 · · · a8,1 a8,2 a8,3 a8,4 a8,5 a8,6 a8,7 a8,8 · · · a9,1 a9,2 a9,3 a9,4 a9,5 a9,6 a9,7 a9,8 · · · a10,1 a10,2 a10,3 a10,4 a10,5 a10,6 a10,7 a10,8 · · · a11,1 a11,2 a11,3 a11,4 a11,5 a11,6 a11,7 a11,8 · · · a12,1 a12,2 a12,3 a12,4 a12,5 a12,6 a12,7 a12,8 · · · .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    143 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us