Bibliography [1] Ahuja, R. K., Magnanti, T. 1., and Orlin, J. B., Networks Flows: Theory, Algorithms, and Apllications. Prentice-Hall, Englewood Cliffs, NJ, 1993 [2] Aigner, M., On the line graph of a directed graph. Math. Z., 102 (1967), 56-61 [3] Appel, K., and Haken, W., Every planar map is four colorable. Bull. Amer. Math. Soc., 82 (1976), 711-712 [4] Appel, K., and Haken, W., Every planar map is four colorable. Part I, Discharging. fllinois J. Math., 21 (1977), 429-490 [5] Appel, K., Haken, W., and J. Koch., Every planar map is four colorable. Part II, Reducibility. fllinois J. Math., 21 (1977), 491-567 [6] Appel, K., and Haken, W., Every planar map is four colorable. With the collaboration of J. Koch. Contemporary Mathematics, 98 (1989), 1-741 [7] Behzad, M., Chartrand, G., and Wall, C., On minimal regular digraphs with given girth. Fund. Math., 65 (1970), 225-231 [8] Bellmore, M., and Nemhauser, G. L., The travelling salesman problem: a survey. Operations Reaserch, 16 (1968), 538-558 [9] Berge, C., Two theorems in graph theory. Proc. Nat. Acad. Sei. USA, 43 (1957), 842-844 [10] Biggs, N. L., Lloyd, E. K., and Wilson, R. J., Graph Theory, 1736-1936. Clarendon Press, Oxford, 1976 310 BIBLIOGRAPHY [11) Biggs, N. L., and White, A., Permutation Group and Combinatoral Struetures. Garnbridge University Press, Cambridge, 1979 [12) Birkhoff, G.D., The reducibility of maps. Amer. Math., 35(1913), 115- 128 [13) Boesch, F. T., The strongest monotone degree condition for n-connected­ ness of a graph. J. Combin. Theory (B), 16 (1974), 162-165 [14) Bondy, J. A., Properties of graphs with constraints on degree. Studia Sei. Math. Hungar., 4 (1969), 473-475 (15) Bondy, J. A., Induced subsets. J. Combin. Theory (B), 12 (1972), 201- 202 (16J Bondy, J. A., Aremark on two sufficient conditions for Rarnilton cycles. Diserete Math., 22 (1978), 191-193 [17) Bondy, J. A., and Chvatal, V., A method in graph theory. Diserete Math., 15(1976), 111-136 [18) Bondy, J. A., and Murty, U. S. R., Graph Theory with Applieations. London and Basingstoke, MacMillan Press LTD, 1976 (19) Bondy, J. A., and Thomassen, C., A short proof of Meyniel's theorem. Diserete Math., 19 (1977), 195-197 (20J Bridges, W. G., and Toueg, S., On the impossibility of directed Moore graphs. J. Combin. Theory (B), 29 (1980), 319-341 (21} Brooks, R. L., On colouring the nodes of a network. Proe. Garnbridge Philos. Soe., 37 (1941), 194-197 [22) Brooks, R. L. Smith, C. A. B., Stone, A. H., and Tuttle,W. T., The dissection of rectangles into squares. Duke Math. J., 7 (1940), 312-340 [23) Camion, P., Chemins et cricuits hamiltoniens des graphes complets. C. R. Aead. Sei. Paris, 249(1959), 2151-2152 [24J Carlsson, G. E., Cruthirds, J. E., Sexton, H. B., and Wright, C: G., In­ terconnection networks based on a generalization of cube-connected cycles. IEEE Trans. Computers, 34 (8) (1985), 769-772 BIBLIOGRAPHY 311 [25] Cayley, A., On the colouring of maps. Proc. Roy. Geog. Soc. {New Ser.), 1 (1879), 259-261 [26] Cayley, A., A theorem on trees. Quart. J. Pure Appl. Math., 23 (1889), 376-378 [27] Cayley, A., The theory of graphs, graphical representation. Mathematical Papers, Cambridge, 10 (1895), 26-28 [28] Chan, Shu-Park, Graph Theory and its Applications in Electrical Net­ works. Academic Press, Beijing, 1982 [29] Chartrand, G., and Harary, F., Graphs with prescribed connectivities. In Theory of Graphs (P. Erdös and G. Katona, eds). Akademiai Kiad6, Budapest, (1968), 61-63 [30] Chartrand, G., and Lesniak, 1., Graphsand Digraphs. Wadsworth. Inc., Belmont. California, (1986), 172-176 [31] Chaty, G., On critically and minimally k vertex (arc) stronly connected digraphs. Proceedings of the Keszthely, (1976), 193-203. [32] Christofides, N., Worst-case analysis of a new heuristic for the travel­ ling salesman problem. Technical Report, Graduate School of Irrdustrial Administration, Carnegie-Melon University, Pittsburgh, PA, 1976 [33] Chvatal, V., and Erdös, P., A note on hamiltonian circuits. Discrete Math., 2 (1972), 111-113 [34] Dantzing, G. B., On the shortest route through a network. Management Sei., 6 (1960), 187-190 [35] De Bruijn, N. G., A combinatorial problem. Koninklije Nedderlandse van Wetenshappen Proc., 49A(1946), 758-764 [36] Demoucron, G., Malgrange, Y., and Pertuiset, R., Graphes planaires: recommaissance et construction de representation planaires topologiques. Rev. Francaise Recherche Operationnelle, 8 (1964), 33-47 [37] Dijkstra, E. W., A note on two problems in connection with graphs. Numer. Math., 1 (1959), 269-271 312 BIBLIOGRAPHY [38] Dirac, J. A., Some theorems on abstract graphs. Proc. London Math. Soc., 2(1952), 69-81 [39] Dirac, J. A., A property of 4-chromatic graphs and some remarks on critical graphs. J. London Math. Soc., 27(1952), 85-92 [40] Dirac, G. A., Generalisations du theoreme de Menger. C. R. Acad. Sei. Paris, 250 (1960), 4252-4253 [41] Dirac, G. A., Short proof of Menger's graph theorem. Mathematika, 13 (1966), 42-44 [42] Dirac, G. A., and Schuster, S., A theorem of Kuratowski. Indagationes Math., 16 (1954), 343-348 [43] Du, D. Z., Hsu, D. F., and Lyuu, Y. D., On the diameter vulnerability of Kautz digraphs. Discrete Math., 151 (1996), 81-85 (44] Duijvestijn, A. J. W., Simple perfect squared oflowest order. J. Combin. Theory (B), 25 (1978), 240-243 [45] Duijvestijn, A. J. W. Simple perfect squared squares and 2 x 1 squared rectangles of order 26. Mathematics of Computation. 65(215) (1996), 1359- 1364 [46] Dulmage, A. L., and Mendelsohn, N. S., Graph and matrices. Graph Theory and Theoretical Physics (edited by Harary, F.). London, Academic Press, 1967, 167-227 [47] Edmonds, J., Paths, tree an flows. Canad. J. Math., 17 (1965), 449-467 [48] Edmonds, J., and Johnson, E. L., Matching: A well-solved dass of in­ teger linear programs. Combinatorial Structures and Their Applications, Gordon and Breach, New York, (1970), 89-92 (49] Edmonds, J., and Johnson, E. L., Matching, Euler tours and the Chinese postman. Math. Programming, 5 (1973), 88-124 (50] Edmonds, J., and Karp, R. M., Theoretic improvements in algorithmic efficiency for network flow problems. J. Assoc. Comput. Mach., 19 (1972), 248-264 BIBLIOGRAPHY 313 [51] Egervary, J., Matrixok kombinatorikus tulajonsagair6l. Mat. es Fiz. Lapok, 38 {1931), 16-28 [52) Elians, P., Feinstein, A, and Shannon, C. F., A note on the maximum fiow through a networks. IRE Trans. Inform. Theory, 2 (1956), 117-119 [53] Elspas, B., Topological constraints on interconnection-limited logic. In Proceedings of the 5th Annual Symposium on Switching Circuit Theory and Logic Design, 5 (1964), 133-147 [54] Erdös, P., On the graph-theorem of Turan (in Hungaian). Mat. Lapok, 21 (1970), 249-251 264-286 [55] Erdös, P., Fajtlowicz, S. and Hoffman, A. J., Maximum degree in graphs of diameter 2. Networks, 10 (1980), 87-90 [56] Erdös, P., and WÜson, R. J., On the chromatic index of almost all graphs. J. Combin. Theory (B), 26 (1977), 255-257 [57] Euler, L., Solutio problematis ad geometriam situs pertinentis. Com­ ment. Academiae Sei. I. Petropolitanae, 8 (1736), 128-140 [58] Euler, L., Demonstratio nommullarum insignium proprietatum quibus solida hedris planis inclusa sunt praedita. Novi Comm. Acad. Sei. Imp. Petropol, 4 (1752-3), 140-160 [59] Fan Genghua, New sufficient conditions for cycles in graphs, J. Combin. Theory (B), 37 (1984), 221-227 [60] Fary, 1., On straight line representation ofplanar graphs. Acta Sei. Math. Szeged., 11 (1948), 229-233 [61] Federico, P. J ., Squaring rectangles and squares. Graph Theory and Re­ lated Topics, Proceedings of the Conference held in honour of Professor W. T. Tuttle on the occasion of his sixieth birthday (edited by J. A. Bondy and U. S. R. Murty), Academic Press, New York, 1979, 173-196 [62] Fiol, M. A., Yebra, J. L. A., and Alegre, L., Line digraph iterations and (d, k) digraph problem. IEEE Trans. Computers, 33 (5) (1984), 400-403 314 BIBLIOGRAPHY (63) Folkman, J. H., Regular line-symmetric graphs. J. Combin. Theory, 3 (1967), 215-232 (64) Forbenius, G., Über zeriegbare Dertminaten, Sitzugsber, König. Preuss. Akad. Wiss., XVIII (1917), 274-277 (65) Ford, L. R. Jr., and Fulkerson, D. R., Maximal flow through a network. Canad. J. Math., 8 (1956), 399-404 (66) Ford, L. R. Jr., and Fulkerson, D. R., A simple algorithm for fiding maximal network flows and an application to Hitchcock problem. Canad. J. Math., 9 (1957), 210-218 [67) Ford, L. R. Jr., and Fulkerson, D. R., Flows in Networks. Princeton University Press, Princeton, 1962 (68) Frink, 0., and Smith, P. A., Irreducihle non-planar graphs. Bull. Amer. Math. Sei., 36 (1930), 214 [69) Frucht, R., Herstellung von Graphen mit vorgegebener abstrakten Gruppe. Compositio Math., 6 (1938),239-250 [70) Gallai, T., Über extreme Punkt-und Kantenmengen. Ann. Univ. Sei. Budapest, Eötvös Beet. Math., 2 (1959), 133-138 (71) Gallai, T., On directed paths and circuits. in Theory of Graphs (edited by P. Erdös and G. Katona), Academic Press, New York, 1968, 115-118 [72) Geiler, D., and Harary, F., Connectivity in digraphs. In Reeent Trends in Graph Theory (edited by M. Capobuanco, J. B. Frechen and M. Krolik), Lecture Notes in Mathematics, 186, Springer-Verlag, 1971, 105-115 (73) Ghouila-Houri, A., Une Condition suffi.sance dexistece dun circuit hamil­ tonien. C. R. Aead. Sei. Paris, 251 (1960), 495-497 (74) Gibbons, A., Algorithmie Graph Theory. Cambrisge Unversity Press, Cambridge, Loandon, 1985 [75) Good, I. J., Normal recurring decimals. J. London Math. Soe., 21 (1946), 167-169 BIBLIOGRAPHY 315 [76) Grarey, M. R., and Johnson, D. S., Computers and Iritractability, A guide to the theory of NP-completeness. W. H. Freeman, 1979 [77) Graver, J.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages26 Page
-
File Size-