Delaunay Triangulations: Properties, Algorithms, and Complexity

Delaunay Triangulations: Properties, Algorithms, and Complexity

Delaunay triangulations: properties, algorithms, and complexity Olivier Devillers 1-1 Delaunay triangulations: properties, algorithms, and complexity Extra question: what is the difference between an algorithm and a program? Olivier Devillers 1-2 Algorithm Recipe to go from the input to the output Formalized description in some language May use data structure Proof of correctness Complexity analysis 2 Delaunay Triangulation: definition, empty circle property 3-1 Delaunay Triangulation: definition, empty circle property Point set 3-2 Delaunay Triangulation: definition, empty circle property Point set Query 3-3 Delaunay Triangulation: definition, empty circle property Point set Query 3-4 Delaunay Triangulation: definition, empty circle property Point set Query 3-5 Delaunay Triangulation: definition, empty circle property Point set Query Nearest neighbor 3-6 Delaunay Triangulation: definition, empty circle property Point set Voronoi diagram 3-7 Delaunay Triangulation: definition, empty circle property Point set Voronoi diagram 3-8 Delaunay Triangulation: definition, empty circle property Point set Voronoi diagram 3-9 Delaunay Triangulation: definition, empty circle property Point set Voronoi diagram 3-10 Delaunay Triangulation: definition, empty circle property Point set Voronoi diagram Delaunay triangulation 3-11 Delaunay Triangulation: definition, empty circle property Point set Delaunay triangulation Empty circle property 3-12 Delaunay Triangulation: definition, empty circle property Point set Delaunay triangulation Empty circle property 3-13 Delaunay Triangulation: size 4-1 Delaunay Triangulation: size Vertices Edges Faces Euler relation n e + t +1 =2 − 4-2 Delaunay Triangulation: size Vertices Edges Faces Euler relation n e + t +1 =2 − triangular faces 3t + k =2e 4-3 Delaunay Triangulation: size Vertices Edges Faces Euler relation n e + t +1 =2 − triangular faces 3t + k =2e t =2n k 2 < 2n − − e =3n k 3 < 3n − − 4-4 Delaunay Triangulation: size Vertices Edges Faces Euler relation n e + t +1 =2 − triangular faces 3t + k =2e d◦(p)=2e =6n 2k 6 − − p S X2 1 E(d◦(p)) = n d◦(p) < 6 p S X2 average on the choice of point p in set of points S 4-5 Delaunay Triangulation: max-min angle 5-1 Delaunay Triangulation: max-min angle Triangulation Delaunay 5-2 Delaunay Triangulation: max-min angle Triangulation Delaunay smallest angle 5-3 Delaunay Triangulation: max-min angle Triangulation Delaunay smallest angle 5-4 Delaunay Triangulation: max-min angle Triangulation Delaunay smallest angle 5-5 Delaunay Triangulation: max-min angle Triangulation Delaunay smallest angle second smallest angle 5-6 Delaunay Triangulation: max-min angle Proof 6-1 Delaunay Triangulation: max-min angle Definition Delaunay edge 6-2 Delaunay Triangulation: max-min angle Definition Delaunay edge empty circle 9 6-3 Delaunay Triangulation: max-min angle Definition locally Delaunay edge w.r.t. a triangulation 6-4 Delaunay Triangulation: max-min angle Definition locally Delaunay edge w.r.t. a triangulation circle 9 not enclosing the two neighbors neighbor = visible from the edge 6-5 Delaunay Triangulation: max-min angle Lemma ( edge: locally Delaunay) Delaunay 8 () 7-1 Delaunay Triangulation: max-min angle Lemma ( edge: locally Delaunay) Delaunay 8 () Proof: choose an edge 7-2 Delaunay Triangulation: max-min angle Lemma ( edge: locally Delaunay) Delaunay 8 () Proof: choose an edge edges of the quadrilateral are locally Delaunay 7-3 Delaunay Triangulation: max-min angle Lemma ( edge: locally Delaunay) Delaunay 8 () Proof: choose an edge edges of the quadrilateral are locally Delaunay 7-4 Delaunay Triangulation: max-min angle Lemma ( edge: locally Delaunay) Delaunay 8 () Proof: choose an edge edges of the quadrilateral are locally Delaunay Vertices visible through one edge are outside circle 7-5 Delaunay Triangulation: max-min angle Lemma ( edge: locally Delaunay) Delaunay 8 () Proof: choose an edge edges of the quadrilateral are locally Delaunay Vertices visible through one edge are outside circle Induction all vertices outside circle ! 7-6 Delaunay Triangulation: max-min angle Lemma For four points in convex position Delaunay maximize the smallest angle () Two possible triangulation 8-1 Delaunay Triangulation: max-min angle Lemma For four points in convex position Delaunay maximize the smallest angle () Case 1: smallest angle in corner δ 8-2 Delaunay Triangulation: max-min angle Lemma For four points in convex position Delaunay maximize the smallest angle () Case 1: smallest angle in corner δ <δ asmallerangle other triangulation 8-3 9 2 Delaunay Triangulation: max-min angle Lemma For four points in convex position Delaunay maximize the smallest angle () Case 2: smallest angle along diagonal δ 8-4 Delaunay Triangulation: max-min angle Lemma For four points in convex position Delaunay maximize the smallest angle () Case 2: smallest angle along diagonal δ δ 8-5 Delaunay Triangulation: max-min angle Lemma For four points in convex position Delaunay maximize the smallest angle () Case 2: smallest angle <δ along diagonal δ δ asmallerangle other triangulation 8-6 9 2 Delaunay Triangulation: max-min angle 6n 3k 4 Map: Triangulations R − − smallest angle ↵1 ! 9-1 Delaunay Triangulation: max-min angle 6n 3k 4 Map: Triangulations R − − smallest angle ↵1 ! second smallest angle ↵2 9-2 Delaunay Triangulation: max-min angle 6n 3k 4 Map: Triangulations R − − smallest angle ↵1 ! second smallest angle ↵2 third smallest angle ↵3 9-3 Delaunay Triangulation: max-min angle 6n 3k 4 Map: Triangulations R − − smallest angle ↵1 ! second smallest angle ↵2 (↵1,↵2,↵3,...,↵6n 3k 4) − − third smallest angle ↵3 9-4 Delaunay Triangulation: max-min angle 6n 3k 4 Map: Triangulations R − − smallest angle ↵1 ! second smallest angle ↵2 (↵1,↵2,↵3,...,↵6n 3k 4) − − third smallest angle ↵3 sort triangulations in lexicographic order 9-5 Delaunay Triangulation: max-min angle Theorem: Delaunay maximizes minimum angles (in lexicographic order) 10 - 1 Delaunay Triangulation: max-min angle Theorem: Delaunay maximizes minimum angles (in lexicographic order) Proof: Let T be the triangulation maximizing angles 10 - 2 Delaunay Triangulation: max-min angle Theorem: Delaunay maximizes minimum angles (in lexicographic order) Proof: Let T be the triangulation maximizing angles = convex quadrilateral (from 2 triangles T ) )8 2 the diagonal maximizes smallest angle (in quad) 10 - 3 Delaunay Triangulation: max-min angle Theorem: Delaunay maximizes minimum angles (in lexicographic order) Proof: Let T be the triangulation maximizing angles = convex quadrilateral (from 2 triangles T ) )8 2 the diagonal maximizes smallest angle (in quad) = edge, it is locally Delaunay )8 10 - 4 Delaunay Triangulation: max-min angle Theorem: Delaunay maximizes minimum angles (in lexicographic order) Proof: Let T be the triangulation maximizing angles = convex quadrilateral (from 2 triangles T ) )8 2 the diagonal maximizes smallest angle (in quad) = edge, it is locally Delaunay )8 = T = Delaunay ) 10 - 5 Delaunay triangulation Lower bound A stupid algorithm for sorting numbers 11 - 1 Delaunay triangulation Lower bound A stupid algorithm for sorting numbers project on parabola 11 - 2 Delaunay triangulation Lower bound A stupid algorithm for sorting numbers project on parabola compute Delaunay triang. 11 - 3 Delaunay triangulation Lower bound A stupid algorithm for sorting numbers project on parabola compute Delaunay triang. find lowest point 11 - 4 Delaunay triangulation Lower bound A stupid algorithm for sorting numbers project on parabola compute Delaunay triang. find lowest point enumerate x coordinates in ccw CH order 11 - 5 Delaunay triangulation Lower bound A stupid algorithm for sorting numbers O(n) project on parabola f(n) compute Delaunay triang. O(n) find lowest point O(n) enumerate x coordinates in ccw CH order Lower bound on sorting = f(n)+O(n) ⌦(n log n) 11 - 6 ) ≥ Delaunay triangulation Lower bound A stupid algorithm for sorting numbers O(n) project on parabola f(n) compute Delaunay triang. O(n) find lowest point O(n) enumerate x coordinates in ccw CH order Lower bound on sorting = f(n)+O(n) ⌦(n log n) 11 - 7 ) ≥ Delaunay Triangulation: predicates 12 - 1 Delaunay Triangulation: predicates Orientation predicate r pqr +? q 111 xq xp xr xp − − = xp xq xr > 0 yq yp yr yp yp yq yr − − q pqr -? p 111 xp xq xr < 0 r yp yq yr p pqr 0? q 111 r xp xq xr =0 yp yq yr p 12 - 2 Delaunay Triangulation: predicates Incircle predicate r s q p pqr ccw triangle query s inside circumcircle 12 - 3 Delaunay Triangulation: predicates r s q p pqr ccw triangle query s cocircular 12 - 4 Delaunay Triangulation: predicates r s q p pqr ccw triangle query s outside circumcircle 12 - 5 Delaunay Triangulation: predicates r q p pqr ccw triangle query s 12 - 6 Delaunay Triangulation: predicates Space of circles ? 2 2 p =(x, y) p =(x, y, x + y ) 12 - 7 Delaunay Triangulation: predicates Space of circles s inside/outside of circle through pqr ? ? ? plane through p q r above/below s? incircle predicate 3D orientation predicate 12 - 8 Delaunay Triangulation: predicates Space of circles s inside/outside of circle through pqr ? ? ? plane through p q r above/below s? incircle predicate 1111 xp xq xr xs 3D orientation predicate sign yp yq yr ys 2 2 2 2 2 2 2 2 x + y x + y x + y x + y p p q q r r s s 12 - 9 Delaunay Triangulation: data structure Data structure for (Delaunay) triangulation Representing incidences Representing hull boundary Representing user’s data put colors in

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    182 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us