ID-Based Cryptography and Smart-Cards Survol Des Techniques Cryptographiques Basées Sur L’Identité Et Implémentation Sur Carte À Puce

ID-Based Cryptography and Smart-Cards Survol Des Techniques Cryptographiques Basées Sur L’Identité Et Implémentation Sur Carte À Puce

ID-based Cryptography and Smart-Cards Survol des techniques cryptographiques basées sur l’identité et implémentation sur carte à puce The Need for Cryptography • Encryption ! Transform a message so that only the intended recipient can read it ! Privacy concerns • Digital signature ! Relate a message to an individual ! Publicly verifiable and (computationally) impossible to forge • Non-repudiation 1 Secret-Key Cryptography • Cytale, Caesar, Vernam, DES, … ! Symmetric encryption Symmetric Encryption Alice Bob Dec m Enc C C m Alice and Bob share the same key: 2 Secret-Key Cryptography • Cytale, Caesar, Vernam, DES, … ! Symmetric encryption • Limitations ! Number of keys: n (n -1)/2 ≈ n2 ! Key distribution Public-Key Cryptography • Inventors ! Whitfield Diffie ! Martin Hellman ! Ralph Merkle • Publications ! W. Diffie & M. Hellman, New directions in cryptography, IEEE TIT, 22 : 644-654, 1976 ! R. Merkle, Secure communications over insecure channels, CACM, 21: 294-299, 1978 3 Analogy • Privacy ! Exchange of encrypted mail • Analogy to padlocked boxes Padlocked Boxes Alice Bob Order is important 4 Diffie-Hellman Key Exchange Alice Bob ? xA ? xB x KA = g A mod p x KB = g B mod p K = (K )xA mod p x AB B KBA = (KA) B mod p KAB = KBA Cryptographic Assumptions • CDH problem ! Given (gx mod p, gy mod p, g, p), compute gxy mod p • DL problem ! Given (gx mod p, g, p), compute x 5 Public-Key Cryptosystems • Diffie-Hellman allows to exchange a secret over an insecure channel • Limitations ! Delays ! “Man-in-the-middle” attack • Public-key cryptography ! Asymmetric encryption ! Exchange of encrypted mails (2) Bob Rivest-Shamir-Adleman • 3 M.I.T. researchers ! Leonard Adleman ! Ronald Rivest ! Adi Shamir • Publication ! R. Rivest, A. Shamir & L. Adleman, A method for obtaining digital signatures and public-key cryptosystems, CACM, 21 : 120-126, 1978 6 RSA Cryptosystem (1/3) • DecSKB(EncPKB(m)) = m • Group (!/N!)* ! Modular exponentiation in (!/N!)* • Permutation iff gcd(e, φ(N)) = 1 ! Euler theorem • Security based on factoring N RSA Cryptosystem (2/3) • Key generation (Bob) φ ! pB et qB, NB = pBqB, eB s.t. gcd(eB, (NB)) = 1 ! PK = {eB, NB} -1 φ ! SK = {pB, qB, dB} with dB = eB mod (NB) • Encryption (Alice) eB ! C = m mod NB • Decryption (Bob) dB ! C mod NB • (Paddings) 7 RSA Cryptosystem (3/3) Alice Bob eB, NB e C = m B mod NB dB m = C mod NB Bob’s certificate needs to be verified Other Applications • RSA signature (1978) ! Based on factoring ! Dual function of RSA encryption • ElGamal encryption/signature (1985) ! Based on DL ! Other groups (e.g., elliptic curves) 8 Identity-Based Cryptography • Inventor ! Adi Shamir, 1984 • Key idea ! Identity serves as public-key ! Certificates become implicit (inside a domain) • No known solution for encryption Indentity-Based Encryption (1/2) • Y. Desmedt and J.-J. Quisquater, 1986 • Security assumptions ! Enc(Dec(m)) = m ! Enc ≠ Dec ! Tamper resistance 9 Identity-Based Encryption (2/2) = master key Alice = Bob’s secret key Bob m Master key is present in all cards Dec Enc C C m Dec Dec Id (Bob) Boneh-Franklin • Stanford/UC Davis researchers ! Dan Boneh ! Matt Franklin • Publication ! D. Boneh & M. Franklin, Identity based encryption from the Weil pairing, SIAM J. on Computing 32:586-615, 2003 10 Boneh-Franklin IBE (1/3) • DecSKB(EncIDB(m)) = m × → • Admissible bilinear map e: "1 "1 "2 , i.e., ! [bilinear] e(aP, bQ) = e(P, Q)ab ! [non-degenerate] e(P, P) ≠ 1 ! [computable] efficient algorithm for e • Security based on BDH problem ! Given (P, aP, bP, cP), compute e(P, P)abc Boneh-Franklin IBE (2/3) • Set-up (TTP) × → → → |m| ! e: "1 "1 "2 , h: {0,1}* "1 , H: "2 {0,1} ! master SK: s ! PK = {Ppub= s P, P, e, h, H} • Extract (TTP) — e.g., for Bob ! dIDB= s QIDB where QIDB= h(IDB) • Encryption (Alice) ! QIDB= h(IDB) and gIDB= e(QIDB, Ppub) ⊕ r ! (C1, C2) = (rP, m H(gIDB )) • Decryption (Bob) ⊕ ! m = C2 H(e(dIDB, C1)) 11 Boneh-Franklin IBE (3/3) Alice Bob Sytem parameters Q = h(ID ) IDB B g = e(Q , P ) IDB IDB pub (C , C ) = (rP, m ⊕ H(g r)) 1 2 IDB m = C ⊕ H(e(d , C )) 2 IDB 1 Verification of certificates is implicit (inside the domain) Smart IBE • Boneh-Franklin protocol on smart cards • Prototype library ! allowing to perform encryption/decryption • First solution with the entire pairing computation performed on the smart card 12 Summary & Perspectives • State of the art ! Symmetric encryption (3DES, AES) ! Asymmetric encryption (RSA, ECC) ! ID-based encryption (Boneh-Franklin IBE) • Smart card solutions for ID-based encryption ! Desmedt-Quisquater IBE ! Boneh-Franklin IBE (Smart IBE) • Future research ! More efficient implementations of pairings on constrained devices ! Share the master key s amongst several TTPs ! Design an IBE based on “standard” assumptions Comments/Questions? More info: http://www.geocities.com/MarcJoye/ 13.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    13 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us