Optimising Learning: Implications of Learning Sciences Research by R

Optimising Learning: Implications of Learning Sciences Research by R

OECD/CERI International Conference “Learning in the 21st Century: Research, Innovation and Policy” Optimising Learning: Implications of Learning Sciences Research by R. Keith Sawyer www.oecd.org/edu/whatworkswww.oecd.org/edu/whatworks www.oecd.org/edu/ceriwww.oecd.org/edu/ceri ORGANISATIONORGANISATION FOR FOR ECONOMIC ECONOMIC ORGANISATIONORGANISATION DE COOPÉRATIONDE COOPÉRATION ET ET CO-OPERATIONCO-OPERATION AND AND DEVELOPMENT DEVELOPMENT DE DEDÉVELOPPEMENT DÉVELOPPEMENT ÉCONOMIQUES ÉCONOMIQUES OPTIMISING LEARNING IMPLICATIONS OF LEARNING SCIENCES RESEARCH BY R. KEITH SAWYER1 This chapter introduces the field of learning sciences, and outlines some of its key findings in recent years. It explains that while the standard model of schooling was designed to prepare students for the industrial age, the global shift to the knowledge economy will require the rethinking of schooling in order to accommodate evolving needs. Several key findings of learning sciences research and how they align with the needs of the knowledge economy are explained. Introduction Learning sciences is an interdisciplinary field that studies teaching and learning. Learning scientists study learning in a variety of settings – not only the more formal learning of school classrooms, but also the more informal learning that takes place at home, on the job, and among peers. The goal of the learning sciences is to better understand the cognitive and social processes that result in the most effective learning, and to use this knowledge to redesign classrooms and other learning environments so that people learn more deeply and more effectively. The sciences of learning include cognitive science, educational psychology, computer science, anthropology, sociology, information sciences, neurosciences, education, design studies, instructional design, and other fields. In the late 1980s, researchers in these fields who were studying learning realised that they needed to develop new scientific approaches that went beyond what their own discipline could offer, and to collaborate with other disciplines. Learning sciences was born in 1991, when the first international conference was held, and the Journal of the Learning Sciences was first published. This new science is called the learning sciences because it is an interdisciplinary science; the collaboration among these disciplines has resulted in new ideas, new methodologies, and new ways of thinking about learning. The first comprehensive overview of the field was published in 2006: The Cambridge Handbook of the Learning Sciences (Sawyer, 2006b). Learning sciences researchers are working to design more effective learning environments – including school classrooms, and also informal settings such as science centres or after-school clubs, on-line distance learning, and computer-based tutoring software. These classroom environments combine new curricular materials, new collaborative activities, support for teachers, and innovative educational software. Learning sciences research suggests several alternative models of learning, particularly those that involve deep links between formal schooling and the many other learning institutions available to students – libraries, science centres and history museums, after school clubs, on-line activities that can be accessed from home, and even collaborations between students and working professionals. In this report, I draw on learning sciences findings to identify a set of principles that should guide the development of alternative models of learning. 1 Associate Professor of education, psychology, and business at Washington University, St. Louis. He is an expert in creativity research and learning sciences. Author of Group Genius: the Creative Power of Collaboration (2007) and editor of the Cambridge Handbook of the Learning Sciences (2006). 1 The standard model of schooling By the 20th century, all major industrialised countries offered formal schooling to all of their children. These many educational systems took different paths, but eventually converged on essentially the same model of schooling. When this model emerged in the 19th and 20th centuries, scientists did not know very much about how people learn. Even by the 1920s, when schools started to become the large bureaucratic institutions that we know today, there still was no sustained study of how people learn. As a result, this model of schooling was based on common-sense assumptions that had never been tested scientifically: Knowledge is a collection of facts about the world and procedures for how to solve problems. Facts are statements like “The earth is tilted on its axis by 23.45 degrees” and procedures are step-by-step instructions like how to do multi-digit addition by carrying to the next column. The goal of schooling is to get these facts and procedures into the student’s head. People are considered to be educated when they possess a large collection of these facts and procedures. Teachers know these facts and procedures, and their job is to transmit them to students. Simpler facts and procedures should be learned first, followed by progressively more complex facts and procedures. The definitions of “simplicity” and “complexity” and the proper sequencing of material were determined either by teachers, by textbook authors, or by asking expert adults like mathematicians, scientists, or historians – not by studying how children actually learn. The way to determine the success of schooling is to test students to see how many of these facts and procedures they have acquired. Because this traditional vision of schooling has been taken for granted for so long, it has not been explicitly named until recently. Within the OECD/CERI programme “Alternative Models of Learning” project, this traditional model is referred to as the standard model. Learning scientists often refer to the traditional model as instructionism, a term coined by Seymour Papert (1993), because it assumes that the core activity of the classroom is instruction by the teacher. Other education researchers have called this a transmission and acquisition model of schooling (e.g. Rogoff, 1990), because it emphasises that a knowledgeable teacher transmits knowledge, and a learner then acquires that knowledge. Standard model schools effectively prepared students for the industrialised economy of the early 20th century; schools based on this model have been effective at transmitting a standard body of facts and procedures to students. The goals of standard model schools were to ensure standardization – all students were to memorise and master the same core curriculum – and this model has been reasonably effective at accomplishing these goals. Standard model schools were structured, scheduled, and regimented in a fashion that was explicitly designed by analogy with the industrial-age factory (Callahan, 1962), and this structural alignment facilitated the ease of transition from school student to factory worker. The shift to the innovation economy In recent decades, many OECD member countries have experienced a rapid transformation from an industrial to a knowledge economy (Bell, 1976; Drucker, 1993). The knowledge economy is based on “the production and distribution of knowledge and information, rather than the production and distribution of things” (Drucker, 1993, p. 182). In the knowledge economy, knowledge workers are “symbolic analysts” (Reich, 1991) who manipulate symbols rather than machines, and who create conceptual artefacts rather than physical objects (Bereiter, 2002; Drucker, 1993). Several economists have begun to argue that in 2 today’s economy, knowledge is an intrinsic part of the economic system – a third factor, added to the traditional two of labour and capital (Florida, 2002; Romer, 1990). These analysts emphasise the importance of creativity, innovation, and ingenuity in the knowledge economy; some scholars now refer to today’s economy as a creative economy (Florida, 2002; Howkins, 2001). Florida argued that “we now have an economy powered by human creativity” (2002, pp. 5-6) and that human creativity is “the defining feature of economic life” (p. 21). Florida represents an economic school of thought known as New Growth Theory, which argues that creativity and idea generation are central to today’s economy (Cortright, 2001). By the 1990s, educators had begun to realise that if the economy was no longer an industrial-age factory economy, then our schools were designed for a quickly vanishing world (Bereiter, 2002; Hargreaves, 2003; Sawyer, 2006c). This consensus led major governmental and international bodies to commission reports summarising learning sciences research; these reports include the United States National Research Council’s How People Learn (Bransford, Brown and Cocking, 2000), the OECD’s Innovation in the Knowledge Economy: Implications for Education and Learning (2004), and a study of 28 countries conducted by the International Society for Technology in Education, called Technology, Innovation, and Educational Change: A Global Perspective (Kozma, 2003). In the standard model of schooling, the role of educational research is to help schools more effectively transmit facts and procedures to students. But when learning scientists first went into classrooms in the 1970s and 1980s, they discovered that schools were not teaching the deep knowledge that underlies knowledge work. By the 1980s, cognitive scientists had discovered that children retain material better, and are able to generalise it to a broader range of contexts,

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    15 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us