And Some Well-Known Sequences

And Some Well-Known Sequences

1 2 Journal of Integer Sequences, Vol. 5 (2002), 3 Article 02.1.6 47 6 23 11 The function M (s; a; z) and some well-known v m sequences Aleksandar Petojevi¶c Aleja Mar·sala Tita 4/2 24000 Subotica Yugoslavia Email address: [email protected] Abstract In this paper we de¯ne the function vMm(s; a; z), and we study the special cases 1Mm(s; a; z) and nM¡1(1; 1; n + 1). We prove some new equivalents of Kurepa's hypothesis for the left factorial. Also, we present a generalization of the alternating factorial numbers. 1 Introduction Studying the Kurepa function +1 tz ¡ 1 K(z) = !z = e¡t dt (Re z > 0); t ¡ 1 Z0 G. V. Milovanovi¶c gave a generalization of the function +1 tz+m ¡ Q (t; z) M (z) = m e¡tdt (Re z > ¡(m + 1)); m (t ¡ 1)m+1 Z0 where the polynomials Qm(t; z), m = ¡1; 0; 1; 2; ::: are given by m m + z Q (t; z) = 0 Q (t; z) = (t ¡ 1)k: ¡1 m k Xk=0 µ ¶ This work was supported in part by the Serbian Ministry of Science, Technology and Development under Grant # 2002: Applied Orthogonal Systems, Constructive Approximation and Numerical Methods. 1 +1 The function fMm(z)gm=¡1 has the integral representation 1 z(z + 1) ¢ ¢ ¢ (z + m) z¡1 m (1¡»)=» 1 ¡ » Mm(z) = » (1 ¡ ») e ¡ z; d»; m! 0 » Z ³ ´ where ¡(z; x), the incomplete gamma function, is de¯ned by +1 ¡(z; x) = tz¡1e¡t dt: (1) Zx Special cases include M¡1(z) = ¡(z) and M0(z) = K(z); (2) where ¡(z) is the gamma function +1 ¡(z) = tz¡1e¡t dt: Z0 The numbers Mm(n) were introduced by Milovanovi¶c [10] and Milovanovi¶c and Petojevi¶c [11]. For non-negative integers n; m 2 N the following identities hold: ¡ ¡ n 1 (¡1)i n 1 m + n M (0) = 0; M (n) = k! : m m i! k + m + 1 i=0 X Xk=i µ ¶ For the numbers Mm(n) the following relations hold: m Mm(n + 1) = n! + Mº(n); º=0 X M (n) lim º = 1; n!+1 Mº¡1(n) M (n) lim m = 1: n!+1 (n ¡ 1)! +1 The generating function of the numbers fMm(n)gn=0 is given by 1 1 + xn A (x)ex¡1 (Ei (1) ¡ Ei (1 ¡ x) + B (x)ex ¡ C (x)) = M (n) m! m m m m n! n=0 ¡ ¢ X where Am(x), Bm(x), and Cm(x) are polynomials de¯ned as follows: A (x) m m (x ¡ 1)k m = ; m! k k! Xk=0 µ ¶ ¡ ¡ ¡ B (x) m 1 m º m (¡1)k¡1 k 1 (¡1)j (x ¡ 1)º m = ; m! k + º k j! º! º=0 à j=0 ! X Xk=1 µ ¶ X ¡ j C (x) m 1 j m (¡1)k¡1 m (x ¡ 1)j m = (¡1)º ; m! º k ¡ º k j! j=0 ú=0 ! X X µ ¶ kX=j+1 µ ¶ 2 Here Ei (x) is the exponential integral de¯ned by x et Ei (x) = p.v. dt (x > 0): (3) t Z¡1 In this paper, we give a generalization of the function Mm(z) which we denote as vMm(s; a; z). These generalization are of interest because its special cases include: 1M1(1; 1; n + 1) = n!; 1M0(1; 1; n) = !n; nM¡1(1; 1; n + 1) = An: where n!, !n, and An are the right factorial numbers (sequence A000142 in [17]), the left factorial numbers (sequence A003422 in [17]) and the alternating factorial numbers (sequence A005165 in [17]), respectively. They are de¯ned as follows: n¡1 n n¡k 0! = 1; n! = n ¢ (n ¡ 1)!; !0 = 0; !n = k! and An = (¡1) k!: (4) Xk=0 Xk=1 2 De¯nitions We now introduce a generalization of the function Mm(z). De¯nition 1 For m = ¡1; 0; 1; 2; :::; and Re z > v ¡ m ¡ 2 the function vMm(s; a; z) is de¯ned by vMm(s; a; z) = v (¡1)2v+1¡k¡(m + z + 2 ¡ k) = L[s; F (a; k ¡ z; m + 2; 1 ¡ t)]; ¡(z + 1 ¡ k)¡(m + 2) 2 1 Xk=1 where v is a positive integer, and s; a; z are complex variables. The hypergeometric function 2F1(a; b; c; x) is de¯ned by the series 1 (a) (b) xn F (a; b; c; x) = n n (jxj < 1); 2 1 (c) n! n=0 n X and has the integral representation ¡(c) 1 F (a; b; c; x) = tb¡1(1 ¡ t)c¡b¡1(1 ¡ tx)¡adt; 2 1 ¡(b)¡(c ¡ b) Z0 3 in the x plane cut along the real axis from 1 to 1, if Re c > Re b > 0. The symbols (z)n and L[s; F (t)] represent the Pochhammer symbol ¡(z + n) (z) = ; n ¡(z) and Laplace transform 1 L[s; F (t)] = e¡stF (t)dt: Z0 Table 1: The numbers 1Mm(1; a; n) for m = 1; 2; 3; 4 and a = 0; 1; 2 a = 0 in [17] a = 1 in [17] a = 2 in [17] 1M1(1; 0; n) A000217 1M1(1; 1; n) A014144 1M1(1; 2; n) A007489 1M2(1; 0; n) A000292 1M2(1; 1; n) unlisted 1M2(1; 2; n) A014145 1M3(1; 0; n) A000332 1M3(1; 1; n) unlisted 1M3(1; 2; n) unlisted 1M4(1; 0; n) A000389 1M4(1; 1; n) unlisted 1M4(1; 2; n) unlisted The term \unlisted" in Table 1 means that the sequence cannot currently be found in Sloane's on-line encyclopedia of integer sequences[17]. Lemma 1 Let m = ¡1; 0; 1; 2; : : : : Then 1Mm(1; 1; z) = Mm(z): Proof. The proof presented here is due to Professor G. V. Milovanovi¶c. Since (¡1)k¡(z) (k + m + 1)! = (m + 1)!(m + 2) and (1 ¡ z) = ; k k ¡(z ¡ k) we have m + z ¡(m + z + 1) ¡(m + z + 1) (1 ¡ z) (¡1)k = = ¢ k ; k + m + 1 ¡(z ¡ k)(k + m + 1)! ¡(z)(m + 1)! (m + 2) µ ¶ k so that 1 tz+m ¡ Q (t; z) + m + z m = (t ¡ 1)k (jt ¡ 1j < 1) (t ¡ 1)m+1 k + m + 1 Xk=0 µ ¶ 1 ¡(m + z + 1) + (1 ¡ z) (1) (1 ¡ t)k = k k ¢ ¡(z)(m + 1)! (m + 2)k k! Xk=0 ¡(m + z + 1) = F (1; 1 ¡ z; m + 2; 1 ¡ t): ¡(z)(m + 1)! 2 1 4 3 The function 1Mm(s; a; z) +1 +1 +1 3.1 The numbers f1Mm(1; ¡n; r)gr=0 n=0 m=¡1 We have ¡(m + z + 1) M (1; ¡n; z) = L[1; F (¡n; 1 ¡ z; m + 2; 1 ¡ t)]; 1 m ¡(z)¡(m + 2) 2 1 starting with the polynomials 1 m + z n (1 ¡ t)k; n 2 N: k + m + 1 k Xk=0 µ ¶µ ¶ Since n! (¡n) = (¡1)k k (n ¡ k)! we have 1 m + z n ¡(m + z + 1) (1 ¡ t)k = F (¡n; 1 ¡ z; m + 2; 1 ¡ t) (5) k + m + 1 k ¡(z)¡(m + 2) 2 1 Xk=0 µ ¶µ ¶ or, by continuation, 1 n = ¼ cosec ¼z »1¡z(1 ¡ »)m+z+1 1 ¡ (1 ¡ t)» d»: Z0 ¡ ¢ Hence, the following de¯nition is reasonable. De¯nition 2 For n 2 N and m = ¡1; 0; 1; 2; :::; the polynomials z 7! mPn(z) are de¯ned by mPn(z) = L[1; 2F1(¡n; 1 ¡ z; m + 2; 1 ¡ t)]: Table 2: The polynomials mP2(z), mP3(z) and mP4(z) m mP2(z) mP3(z) mP4(z) 1 2 3 1 3 7 2 49 3 4 61 3 193 2 ¡1 2 z ¡ 2 z + 2 ¡ 3 z + 2 z ¡ 6 z + 6 8 z ¡ 12 z + 8 z ¡ 1 2 1 4 1 3 2 29 5 509 0 6 z ¡ 2 z + 3 ¡ 12 z + z ¡ 12 z + 2 ¡ 12 z + 24 1 2 1 7 1 3 9 2 67 17 1 12 z ¡ 4 z + 6 ¡ 30 z + 20 z ¡ 60 z + 10 The polynomials mPn(z) can be expressed in terms of the derangement numbers (sequence A000166 in [17]) k (¡1)º S = k! (k ¸ 0) k º! º=0 X in the form 5 Theorem 1 For m = ¡1; 0; 1; 2; ::: and n 2 N we have 1 n + m + 1 ¡1 n + m + 1 z ¡ 1 P (z) = (¡1)kS : m n n k + m + 1 k k µ ¶ Xk=0 µ ¶µ ¶ Proof. Using the relation (5) we have 1 1 ¡(z)¡(m + 2) ¡t m + z n k mPn(z) = e (1 ¡ t) dt ¡(m + z + 1) 0 k + m + 1 k Z Xk=0 µ ¶µ ¶ 1 ¡(z)(m + 1)! ¡(m + z + 1) n 1 = e¡t(1 ¡ t)kdt ¡(m + z + 1) ¡(z ¡ k)(k + m + 1)! k 0 Xk=0 µ ¶ Z 1 n + m + 1 ¡1 n + m + 1 z ¡ 1 1 = e¡t(1 ¡ t)kdt: n k + m + 1 k 0 µ ¶ Xk=0 µ ¶µ ¶ Z Now use e®s¡(z; ®s) L[s; (t + ®)z¡1] = (Re s > 0); sz to obtain 1 n + m + 1 ¡1 n + m + 1 z ¡ 1 ¡(k + 1; ¡1) P (z) = (¡1)k : m n n k + m + 1 k e µ ¶ Xk=0 µ ¶µ ¶ Here ¡(z; x) is the incomplete gamma function.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    16 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us