Block Diagonalization Based Beamforming

Block Diagonalization Based Beamforming

DEGREE PROJECT IN ELECTRICAL ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2017 Block Diagonalization Based Beamforming DARSHAN ARVIND PATIL KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL ENGINEERING Block Diagonalization Based Beamforming Darshan Arvind Patil Advisor: Prof. Mats Bengtsson Abstract With increasing mobile penetration multi-user multi-antenna wireless commu- nication systems are needed. This is to ensure higher per-user data rates along with higher system capacities by exploiting the excess degree of freedom due to additional antennas at the receiver with spatial multiplexing. The rising popu- larity of "Gigabit-LTE" and "Massive-MIMO" or "FD-MIMO" is an illustration of this demand for high data rates, especially in the forward link. In this thesis we study the MU-MIMO communication setup and attempt to solve the problem of system sumrate maximization in the downlink data transmission (also known as forward link) under a limited availability of transmit power at the base station. Contrast to uplink, in the downlink, every user in the system is required to perform interference cancellation due to signals intended to other co-users. As the mobile terminals have strict restrictions on power availability and physical dimensions, processing capabilities are extremely narrow (relative to the base station). Therefore, we study the solutions from literature in which most of the interference cancellation can also be performed by the base station (precoding). While doing so we maximize the sumrate and also consider the restrictions on the total transmit power available at the base station. In this thesis, we also study and evaluate different conventional linear pre- coding schemes and how they relate to the optimal structure of the solution which maximize the effective Signal to Noise Ratio (SINR) at every receiver output. We also study one of the suboptimal precoding solutions known as Block-diagonalization (BD) applicable in the case where a receiver has multiple receive antennas and compare their performance. Finally, we notice that in spite of the promising results in terms of system sumrate performance, they are not deployed in practice. The reason for this is that classic BD schemes are computationally heavy. In this thesis we attempt to reduce the complexity of the BD schemes by exploiting the principle of coherence and using perturbation theory. We make use of OFDM technology and efficient linear algebra methods to update the beamforming weights in a smart way rather than entirely computing them again such that the overall complexity of the BD technique is reduced by at least an order of magnitude. The results are simulated using the exponential correlation channel model and the LTE 3D spatial channel model which is standardized by 3GPP. The simulated environment consists of single cell MU-MIMO in a standardized urban macro environment with up to 100 transmit antennas at the BS and 2 receive antennas per user. We observe that with the increase in spatial correlations and in high SNR regions, BD outperforms other precoding schemes discussed in this thesis and the developed low complex BD precoding solution can be considered as an alternative in a more general framework with multiple antennas at the receiver. iii Sammanfattning För att klara det ökade mobilanvändandet krävs trådlösa kommunikationssy- stem med multipla antenner. Detta, för att kunna garantera högre datatakt per användare och högre systemkapacitet, genom att utnyttja att extra antenner på basstationen ger extra frihetsgrader som kan nyttjas för spatiell multiplex- ing. Den ökande populariteten hos “Gigabit-LTE”, “Massive-MIMO” och “FD- MIMO” illustrerar detta behov av höga datatakter, framför allt i framåtlänken. I denna avhandling studerar vi MU-MIMO-kommunikation och försöker lö- sa problemet att maximera summadatatakten i nedlänkskommunikation (även kallat framåtlänken), med begränsad tillgänglig sändeffekt hos basstationen. In nedlänken, till skillnad från upplänken, så måste varje användare hantera interferens från signaler som är avsedda för andra mottagare. Eftersom mobil- terminaler är begränsade i storlek och batteristyrka, så har de små möjligheter att utföra sådan signalbehandling (jämfört med basstationen). Därför stude- rar vi lösningar från litteraturen där det mesta av interferensundertryckningen också kan utföras vid basstationen (förkodning). Detta görs för att maximera summadatatakten och även ta hänsyn till begränsningar i basstationens totala sändeffekt. I denna avhandling studerar vi även olika konventionella linjära förkodnings- metoder och utvärderar hur de relaterar till den optimala strukturen hos lös- ningen som maximerar signal till brus-förhållandet (SINR) hos varje mottagare. Vi studerar även en suboptimal förkodningslösning kallad blockdiagonalisering (BD) som är användbar när en mottagare har multipla mottagarantenner, och jämför dess prestanda. Slutligen noterar vi att dessa förkodningsmetoder inte har implementerats i praktiska system, trots deras lovande prestanda. Anledningen är att klassis- ka BD-metoder är beräkningskrävande. I denna avhandling försöker vi minska beräkningskomplexiteten genom att utnyttja kanalens koherens och använda perturbationsteori. Vi utnyttjar OFDM-teknologi och effektiva metoder i linjär algebra för att uppdatera förkodarna på ett intelligent sätt istället för att be- räkna dem på nytt, så att den totala komplexiteten för BD-tekniken reduceras åtminstone en storleksordning. Resultaten simuleras med både en kanalmodell baserad på exponentiell kor- relation och med den spatiella LTE 3D-kanalmodellen som är standardiserad av 3GPP. Simuleringsmiljön består av en ensam makrocell i en standardise- rad stadsmiljö med MU-MIMO med upp till 100 sändantenner vid basstationen och 2 mottagarantenner per användare. Vi observerar att BD utklassar övriga förkodningsmetoder som diskuteras i avhandlingen när spatiella korrelationen ökar och för höga SNR, och att den föreslagna lågkomplexa BD-förkodaren kan vara ett alternativ i ett mer generellt scenario med multipla antenner hos mot- tagarna. vi BD Based Beamforming Acknowledgements I would first like to thank my thesis advisor Prof. Mats Bengtsson of the Electri- cal School at Royal Institute of Technology (KTH), Sweden. Mats consistently allowed this thesis to be my own work but steered me in the right direction whenever he thought I needed it. I feel privileged to have received guidance from one of the pioneers in this field. I would like to thank Zaheer Ahmed and Ericsson for providing me this opportunity. I extend my sincere thanks to Margaretha Forsgren and Nameen Abeyratne for the continuous encouragement. I would like to thank the ex- perts who helped in the implementation and validation survey for this re- search project: Beamforming experts Mats Ahlander and Stéphane Tessier, Researchers Vidit Saxena, David Astely and Miguel Berg. Without their pas- sionate participation and input, the validation could not have been successfully conducted. I would also like to acknowledge Uri Ramdhani of the Electrical School at KTH as the second reader of this thesis, and I am gratefully indebted to her for her very valuable comments on this thesis. I am grateful to Fredrik Lindqvist for the detailed review of the report. I feel obliged to Krister Sundberg and team for their patience and for allowing me to work simultaneously on this report with other assignments. Finally, I must express my very profound gratitude to my parents Arvind and Jayashree Patil, my sisters (Preeti, Arti, and Deepti) and to all my dear friends for providing me with unfailing support and continuous encouragement throughout my duration of study, the process of researching and writing this thesis. This accomplishment would not have been possible without them. Thank you. viii Nomenclature List of Abbreviations AWGN Additive White Gaussian Noise BD Block-diagonalization BER Bit Error Rate BF Beamforming BS Base-Station CSI Channel State Estimation DoF Degree of Freedom DPC Dirty Paper Coding enodeB Evolved node B FDD Frequency Division Duplex ISI Inter-Symbol Interference KSQR Kernel Stacked QR decomposition LOS Line-of-Sight LTE Long Term Evolution MBB Mobile Broadband MIMO Multiple Input Multiple Output MISO Multiple Input Single Output MMSE Minimum Mean Squared Error MPC Multi Path Component MRC Maximum Ratio Combining MU-MIMO Multi-User MIMO OFDM Orthogonal Frequency Division Multiplexing QPSK Quadrature Phase Shift Keying QRD QR Decomposition RB Resource Block SDMA Space Division Multiple Access SIC Successive Interference Cancellation SIMO Single Input Multiple Output SINR Signal to Interference and Noise Ratio SM Spatial multiplexing SNR Signal to Noise ratio SU-MIMO Single-User MIMO SVD Singular Value Decomposition TDD Time Division Duplex x BD Based Beamforming UE User Equipment ULA Uniform Linear Array UMa Urban Macro UPA Uniform Planar Array ZF Zero-Forcing ZFBF Zero-Forcing Beamforming ZMCSGRV Zero Mean Circular Symmetric Gaussian Random Variable Notations ( )H Conjugate and Transpose (Hermitian) Operator · λc Carrier Wavelength m 1 1 n C × ; C × Set of complex vectors m n C × Set of complex matrices H Householder transformation m n R; R × Set of real numbers, set of real complex matrices Ay Pseudo Inverse of matrix H Channel matrix h Channel vector x? Orthogonal Subspace to vector (0; σ2) Complex Gaussian with Zero mean and Variance equal to σ2 CN Numerical Kernel of a matrix K Orthogonal ? nul(A) Nullity of a matrix rank(A) Rank of a matrix rankθ(A) Numerical rank

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    122 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us