Physics and Chemistry of Interstellar Ice

Physics and Chemistry of Interstellar Ice

Physics and Chemistry of Interstellar Ice Physics and Chemistry of Interstellar Ice PROEFSCHRIFT ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van de Rector Magnificus prof. mr. dr. C. J. J. M. Stolker, volgens besluit van het College voor Promoties te verdedigen op dinsdag 26 mars 2013 klokke 15.00 uur door Karoliina Marja-Riitta Guss (née Isokoski) geboren te Nivala, Finland in 1982 Promotiecommisie Promotores: Prof. dr. H. V. J. Linnartz Prof. dr. E. F. van Dishoeck Overige leden: Prof. dr. A. G. G. M. Tielens Prof. dr. H. J. A. Rottgering Dr. M. R. Hogerheijde Dr. G. M. Muñoz Caro Centro de Astrobiología Dr. M. E. Palumbo Osservatorio Astrofisico di Catania Dr. S. Cazaux Kapteyn Astronomical Institute Table of Contents 1 Introduction1 1.1 Formation and evolution of interstellar ice.................2 1.2 Complex molecules in the laboratory....................5 1.3 Morphology of interstellar ice.......................7 1.4 Composition of interstellar ice.......................9 1.5 Complex organic molecules......................... 10 1.6 This thesis.................................. 11 1.7 Main conclusions.............................. 13 2 Thermal collapse of porous amorphous solid water 15 2.1 Introduction................................. 16 2.2 Experimental methods........................... 17 2.3 Results.................................... 20 2.3.1 Interference data and infrared spectra during deposition...... 20 2.3.2 Thermal processing of different ice morphologies......... 21 2.4 Discussion.................................. 24 2.5 Conclusions................................. 27 3 Morphology of porous ASW and CO2 containing ices 29 3.1 Introduction................................. 30 3.2 Experimental methods........................... 32 3.2.1 Experimental setup......................... 32 3.2.2 Optical interference......................... 32 3.2.3 IR spectroscopy........................... 35 3.3 Results.................................... 36 3.3.1 Deposition............................. 36 3.3.2 Thermal annealing......................... 41 3.3.3 Thickness.............................. 42 3.3.4 IR spectroscopy........................... 44 3.4 Discussion.................................. 45 3.4.1 Refractive index of pure H2O................... 45 3.4.2 Thermal annealing of pure H2O.................. 46 3.4.3 Density of pure H2O........................ 48 3.4.4 Residual porosity in annealed H2O................. 48 3.4.5 Pure CO2 ice............................ 49 3.4.6 H2O-CO2 binary ice........................ 50 3.4.7 CO2 segregation.......................... 51 3.5 Summary and conclusions......................... 53 v Inhoudsopgave −1 4 CO mixed in CH3OH ice: answer to the missing 2152 cm band? 55 4.1 Introduction................................. 56 4.2 Experimental methods........................... 58 4.3 Observations of the red component..................... 59 4.4 Dangling-OH blocking by CO2 ....................... 62 4.5 CO mixed with CH3OH........................... 65 4.6 Conclusions and astrophysical implications................ 67 5 Highly resolved infrared spectra of pure CO2 ice 69 5.1 Introduction................................. 70 5.2 Experimental procedure........................... 72 5.3 Results.................................... 73 5.3.1 Corrections............................. 75 5.4 Discussion.................................. 76 5.5 Optical Constants and Grain Shape-Corrections.............. 80 5.6 Summary.................................. 83 6 Laser-desorption TOF mass spectrometry of cryogenic ices 85 6.1 Introduction................................. 86 6.2 Instrumentation............................... 87 6.2.1 Substrate.............................. 89 6.2.2 Sample deposition......................... 89 6.2.3 Processing............................. 89 6.2.4 Laser desorption.......................... 89 6.2.5 Entrainment............................. 90 6.2.6 Time-of-flight mass analysis.................... 91 6.2.7 EI Ionization............................ 91 6.3 Results.................................... 92 6.3.1 Calibration............................. 92 6.3.2 Carrier gas profile......................... 92 6.3.3 Laser desorption of pure ices.................... 93 6.3.4 Sensitivity............................. 96 6.3.5 VUV photoprocessed C2H6 .................... 96 7 Chemistry of massive young stellar objects with a disk-like structure 99 7.1 Introduction................................. 100 7.2 Observations................................ 102 7.2.1 Observed sources.......................... 102 7.2.2 Observational details........................ 105 7.3 Data analysis................................ 106 7.3.1 Rotation diagrams......................... 106 7.3.2 Spectral modeling......................... 107 7.4 Results.................................... 109 7.4.1 General results and comparison between sources......... 109 vi Inhoudsopgave 7.4.2 Optical depth determinations.................... 110 7.4.3 Temperatures............................ 110 7.4.4 Column densities.......................... 112 7.5 Discussion.................................. 116 7.5.1 Comparison to massive YSOs without a disk structure...... 116 7.5.2 Chemical and physical implications................ 122 7.6 Summary and conclusions......................... 124 7.7 Appendix.................................. 125 7.7.1 Detected lines per species for all sources............. 125 7.7.2 Rotation diagrams......................... 144 7.7.3 Weeds and CASSIS model parameters............... 150 7.7.4 Additional detections........................ 153 Literature 156 Nederlandse samenvatting 167 Publications 173 Curriculum vitae 175 Acknowledgements 177 vii Chapter I INTRODUCTION 1 1 Chapter 1 – Introduction The importance of ice in the interstellar medium (ISM) is indisputable. Gas phase reactions relying on three-body collisions are exceedingly rare in the sparse medium be- tween the stars. On solid surfaces, atoms and molecules can reside and rove the surface until a reaction takes place. Upon reaction, the released energy is dissipated into the grain, allowing the new species to form. Solid surfaces thus act as sites for chemical processes, that would otherwise be very slow, or not take place at all. Interstellar processes influence the structure, composition and evaporation of ices. Astronomical observations of ices and gas evaporated from them, are direct probes of the physical conditions in the interstellar medium. Ices can therefore trace the evolution of material and shed light on essential processes, such as the formation of solar systems like our own. Owing to the strong hydrogen bonding in interstellar ices, sticking of small icy dust grains may be enhanced. Porous ice structures dissipate collision energy and hence facil- itate the aggregation at high velocities. This can promote coagulation and the formation of larger solar system bodies and planetesimals. Interstellar ices are important repositories of complex organic molecules and have a potential prebiotic bearing on the origin of life. Icy comets may have delivered volatiles and organic material relevant for the origin of life on the early Earth. Also water in our oceans may derive from this reservoir. With the growing number of detected exoplanets, this may be universally important. Hence, the composition and physical structure of interstellar ice are of fundamental importance to our understanding of the formation of stars, planets and the origin of life. This thesis is devoted to the understanding of the physical and chemical properties of interstellar ice using a range of observational and experimental techniques. 1.1 Formation and evolution of interstellar ice No discussion of interstellar ices would be meaningful without an understanding of the environment in which they are formed: dense molecular clouds. The interstellar medium – material between stars in the galaxy – is an inhomogenous distribution of gas (99 mass %) and dust (1 mass %). The most dense regions of the ISM are the protostellar cores, where the density is high enough to lead to a gravitational collapse resulting in the birth of new stars and planets (Shu et al. 1987, McKee & Ostriker 2007). The collapsing regions are fed from a larger molecular cloud, the density of which is high enough (103–105 cm−3) to provide shielding from the harsh external UV field. It is under these conditions that in- terstellar ices form on cold dust grains. At average molecular cloud densities of 104 cm−3 atoms and molecules land on the surface of a sub-micron sized dust grain in average once per day (e.g., Tielens & Allamandola 1987). The low temperatures allow particles to accrete, rove the surface and form new molecules. Sheltered from the strong UV field, molecules are able to accumulate on the grain to form a mantle of interstellar ice (Fig. 1.1). The composition of interstellar ice is determined by the physical conditions in the ambient gas. Most carbon arrives on the dust grain in the form of carbon monoxide (CO). Hydrogen (H), nitrogen (N) and oxygen (O) may be in atomic or molecular form. Even at 2 1.1 Formation and evolution of interstellar ice Prestellar core H Polar ice CO freeze-out H2O, CO2, NH3 Hydrogenation CO + H ... CH3OH C/CO N/N2 H/H2 O/O2 Cosmic rays UV photons Re-condensation Dissociation CH3OH ... radicals, e.g. CH3• Thermal processing Morphological Thermal / non-thermal changes desorption Protostellar Recombination CH3• + CH3OH ... C2H5OH envelope

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    188 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us