Faloutsos 15-415 CMU SCS CMU SCS Why Sort? Carnegie Mellon Univ. Dept. of Computer Science 15-415 - Database Applications Lecture 11: external sorting and query evaluation (R&G ch. 13 and 14) Faloutsos 15-415 1 Faloutsos 15-415 2 CMU SCS CMU SCS Why Sort? Outline • select ... order by – e.g., find students in increasing gpa order • two-way merge sort • bulk loading B+ tree index. • external merge sort • duplicate elimination (select distinct) • fine-tunings • select ... group by • B+ trees for sorting • Sort-merge join algorithm involves sorting. Faloutsos 15-415 3 Faloutsos 15-415 4 CMU SCS CMU SCS 2-Way Sort: Requires 3 Buffers Two-Way External Merge Sort • Pass 0: Read a page, sort it, write it. 3,4 6,2 9,4 8,7 5,6 3,1 2 Input file • Each pass we read + PASS 0 – only one buffer page is used 3,4 2,6 4,9 7,8 5,6 1,3 2 1-page runs write each page in file. PASS 1 4,7 1,3 • Pass 1, 2, 3, …, etc.: requires 3 buffer pages 2,3 2-page runs 4,6 8,9 5,6 2 – merge pairs of runs into runs twice as long PASS 2 2,3 – three buffer pages used. 4,4 1,2 4-page runs 6,7 3,5 8,9 6 PASS 3 INPUT 1 1,2 OUTPUT 2,3 INPUT 2 3,4 8-page runs 4,5 6,6 Main memory buffers Disk Disk 7,8 Faloutsos 15-415 5 Faloutsos 15-415 9 6 1 Faloutsos 15-415 CMU SCS CMU SCS Two-Way External Merge Sort Two-Way External Merge Sort 3,4 6,2 9,4 8,7 5,6 3,1 2 Input file 3,4 6,2 9,4 8,7 5,6 3,1 2 Input file • Each pass we read + PASS 0 • Each pass we read + PASS 0 3,4 2,6 4,9 7,8 5,6 1,3 2 1-page runs 3,4 2,6 4,9 7,8 5,6 1,3 2 1-page runs write each page in file. PASS 1 write each page in file. PASS 1 4,7 1,3 4,7 1,3 2,3 2-page runs 2,3 2-page runs 4,6 8,9 5,6 2 4,6 8,9 5,6 2 PASS 2 PASS 2 2,3 2,3 4,4 1,2 4-page runs 4,4 1,2 4-page runs 6,7 3,5 6,7 3,5 8,9 6 8,9 6 PASS 3 PASS 3 1,2 1,2 2,3 2,3 3,4 8-page runs 3,4 8-page runs 4,5 4,5 6,6 6,6 7,8 7,8 Faloutsos 15-415 9 7 Faloutsos 15-415 9 8 CMU SCS CMU SCS Two-Way External Merge Sort Two-Way External Merge Sort 3,4 6,2 9,4 8,7 5,6 3,1 2 Input file 3,4 6,2 9,4 8,7 5,6 3,1 2 Input file • Each pass we read + PASS 0 • Each pass we read + PASS 0 3,4 2,6 4,9 7,8 5,6 1,3 2 1-page runs 3,4 2,6 4,9 7,8 5,6 1,3 2 1-page runs write each page in file. PASS 1 write each page in file. PASS 1 4,7 1,3 4,7 1,3 2,3 2-page runs 2,3 2-page runs 4,6 8,9 5,6 2 • N pages in the file => 4,6 8,9 5,6 2 PASS 2 PASS 2 log2 N 1 2,3 2,3 4,4 1,2 4-page runs 4,4 1,2 4-page runs 6,7 3,5 • So total cost is: 6,7 3,5 8,9 6 8,9 6 PASS 3 2 N log2 N 1 PASS 3 1,2 1,2 2,3 • Idea: Divide and 2,3 3,4 8-page runs 3,4 8-page runs 4,5 conquer: sort subfiles 4,5 6,6 6,6 7,8 and merge 7,8 Faloutsos 15-415 9 9 Faloutsos 15-415 9 10 CMU SCS CMU SCS Outline External merge sort • two-way merge sort B > 3 buffers • external merge sort • Q1: how to sort? • fine-tunings • Q2: cost? • B+ trees for sorting Faloutsos 15-415 11 Faloutsos 15-415 12 2 Faloutsos 15-415 CMU SCS CMU SCS General External Merge Sort General External Merge Sort B>3 buffer pages. How to sort a file with N pages? – Pass 0: use B buffer pages. Produce N / B sorted runs of B pages each. – Pass 1, 2, …, etc.: merge B-1 runs. INPUT 1 INPUT 2 . OUTPUT . INPUT B-1 Disk Disk Disk B Main memory buffers Disk B Main memory buffers Faloutsos 15-415 13 Faloutsos 15-415 14 CMU SCS CMU SCS Sorting Sorting – create sorted runs of size B (how many?) – create sorted runs of size B – merge them (how?) – merge first B-1 runs into a sorted run of (B-1) *B, ... B B ….. ... ... ... ... Faloutsos 15-415 15 Faloutsos 15-415 16 CMU SCS CMU SCS Cost of External Merge Sort Sorting – How many steps we need to do? • Number of passes: 1 log B1 N / B „i‟, where B*(B-1)^i > N • Cost = 2N * (# of passes) – How many reads/writes per step? N+N B ….. ... ... Faloutsos 15-415 17 Faloutsos 15-415 18 3 Faloutsos 15-415 CMU SCS CMU SCS Number of Passes of External Cost of External Merge Sort Sort ( I/O cost is 2N times number of passes) • E.g., with 5 buffer pages, to sort 108 page N B=3 B=5 B=9 B=17 B=129 B=257 file: 100 7 4 3 2 1 1 – Pass 0: 108 / 5 = 22 sorted runs of 5 pages 1,000 10 5 4 3 2 2 each (last run is only 3 pages) 10,000 13 7 5 4 2 2 – Pass 1: 22 / 4 = 6 sorted runs of 20 pages 100,000 17 9 6 5 3 3 each (last run is only 8 pages) 1,000,000 20 10 7 5 3 3 – Pass 2: 2 sorted runs, 80 pages and 28 pages 10,000,000 23 12 8 6 4 3 – Pass 3: Sorted file of 108 pages 100,000,000 26 14 9 7 4 4 ┌ ┐ 1,000,000,000 30 15 10 8 5 4 Formula check: log 22 = 3 … + 1 4 passes √ 4 Faloutsos 15-415 19 Faloutsos 15-415 20 CMU SCS CMU SCS Outline Outline • two-way merge sort • two-way merge sort • external merge sort • external merge sort • fine-tunings • fine-tunings • B+ trees for sorting – which internal sort for Phase 0? – blocked I/O • B+ trees for sorting Faloutsos 15-415 21 Faloutsos 15-415 22 CMU SCS CMU SCS Internal Sort Algorithm Internal Sort Algorithm • Quicksort is a fast way to sort in memory. • Quicksort is a fast way to sort in memory. • But: we get B buffers, and produce 1 run of length • But: we get B buffers, and produce 1 run of length B. B. • Can we produce longer runs than that? • Can we produce longer runs than that? Heapsort: B=3 B=3 • Pick smallest • Output • Read from next buffer Faloutsos 15-415 23 Faloutsos 15-415 24 4 Faloutsos 15-415 CMU SCS CMU SCS details Internal Sort Algorithm Reminder: Heapsort • Quicksort is a fast way to sort in memory. • But: we get B buffers, and produce 1 run of length B. pick smallest, write to output buffer: • Can we produce longer runs than that? 10 • Alternative: “tournament sort” (a.k.a. “heapsort”, 14 11 “replacement selection”) • Produces runs of length ~ 2*B 15 17 18 16 • Clever, but not implemented, for subtle reasons: tricky memory management on variable length records Faloutsos 15-415 25 Faloutsos 15-415 26 CMU SCS CMU SCS details details Heapsort: Heapsort: 10 pick smallest, write to output buffer: get next key; put at top and ‘sink’ it ... 22 14 11 14 11 15 17 18 16 15 17 18 16 Faloutsos 15-415 27 Faloutsos 15-415 28 CMU SCS CMU SCS details details Heapsort: Heapsort: get next key; put at top and ‘sink’ it get next key; put at top and ‘sink’ it 11 11 14 22 14 16 15 17 18 16 15 17 18 22 Faloutsos 15-415 29 Faloutsos 15-415 30 5 Faloutsos 15-415 CMU SCS CMU SCS details Heapsort: Outline • two-way merge sort When done, pick top (= smallest) • external merge sort 11 and output it, if ‘legal’ (ie., >=10 in our example • fine-tunings 14 16 – which internal sort for Phase 0? This way, we can keep on reading – blocked I/O 15 17 18 22 new key values (beyond the B ones of quicksort) • B+ trees for sorting Faloutsos 15-415 31 Faloutsos 15-415 32 CMU SCS CMU SCS Blocked I/O & double-buffering Blocked I/O & double-buffering • So far, we assumed random disk access • So far, we assumed random disk access • Cost changes, if we consider that runs are • Cost changes, if we consider that runs are written (and read) sequentially written (and read) sequentially • What could we do to exploit it? • What could we do to exploit it? • A1: Blocked I/O (exchange a few r.d.a for several sequential ones) • A2: double-buffering Faloutsos 15-415 33 Faloutsos 15-415 34 CMU SCS CMU SCS Double Buffering Outline • To reduce wait time for I/O request to complete, can prefetch into `shadow block‟.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages16 Page
-
File Size-