Ravy Bootstat .Pdf

Ravy Bootstat .Pdf

Basics symmetry in condensed matter physics Sylvain Ravy Laboratoire de physique des solides CNRS, Université Paris-Saclay • Symmetry: • From greak (sun) ‘’with" (metron) "measure" • Same etymology as "commensurate" • Until mid-XIX: only mirror symmetry Definitions • Transformation, Group • Évariste Galois 1811, 1832. Symmetry: Property of invariance of an objet under a space transformation Transformation • Bijection which maps a geometric set in itself M f(M)=M’ • Affine transformation maps two points P and P’ such that: f(M) = P’ + O(PM) P’ P P f : positions O : vectors Isometries f(M) = P’ + O(PM) • Isometry ||O(u)||=||u|| distance-preserving map • Two types of isometry: • Affine isometry: f(M) • Transforms points – space groups • Microscopic properties of crystals (electronic structure) • Translation • Helix of pitch P • Rotations • Reflections (a, Pa /2p) • Linear isometry O(PM) • Transforms vectors (directions) – point groups • Macroscopic properties of crystals (response functions) 60° • Rotations E ? • Reflections Linear isometry- 2D ||O(u)|| = ||u|| • In the plane (2D) • Rotations • Reflections (reflections through an axis) q q/2 • Determinant +1 • Determinant -1 • Eigenvalues eiq, e-iq • Eigenvalues -1, 1 Linear isometry - 3D • ||O(u)|| = |l| ||u|| Eigenvalues |l | = 1 • In space (3D) : • l : 3rd degree equation (real coefficients) ±1, eiq, e-iq (det. = ± 1) • det. = 1 • det. = -1 • Direct symmetry • Indirect symmetry ퟏ ퟎ ퟎ −ퟏ ퟎ ퟎ ퟎ cos 휽 − sin 휽 ퟎ cos 휽 − sin 휽 ퟎ sin 휽 cos 휽 ퟎ sin 휽 cos 휽 Rotations Rotoreflections a) Rotation by angle q q q b) Roto-reflection q Improper rotation c) Inversion (p) q d) Roto-inversion (p+q ) c) Reflection (0) Stereographic projection • To represent directions preserves angles on the sphere NN Direction OM M O P’ P P’ M’ P P, projection of OM : Intersection of SM and equator S • Conform transformation (preserves angles locally) but not affine Main symmetry operations • Conventionally • Direct • Rotations (A ) p n • n-fold rotation An (2 /n) • Reflections (M) • Represented by a polygon of same symmetry. • Inversion (C)_ • Rotoinversion (An) . A2 vertical A2 horizontal A3 A4 A5 • Indirect ~ • Rotoreflections (An) • Symmetry element • Reflection (M) • Locus of invariant points • Inversion (C) _ • Rotoinversions (An) . M vertical M horizontal M Inversion A4 Composition of symmetries • Two reflections with angle a = rotation 2a M M’M=A 2a M’ a • Euler construction A AN3 N2 AN1 p/N2 p/N1 Composition of two rotations = rotation AN2AN1=AN3 • No relation between N1, N2 et N3 Point group: definition • The set of symmetries of an object forms a group G : point group • A and B G, AB G (closure) • Associativity (AB)C=A(BC) 1 2 • Identity element E (1-fold rotation) • Invertibility A, A-1 • No commutativity in general (rotation 3D) 2 1 • Example: point group of a rectangular table (2mm) Mx *E Mx My A2 My EE Mx My A2 Mx Mx E A2 My A2 My My A2 E Mx A2 A2 My Mx E • Multiplicity: number of elements 2mm Composition of rotations Constraints AN2 AN1 AN3 p/N2 p/N1 234 Spherical triangle, angles verifies: AN A2 22N (N>2), 233, 234, 235 A2 Dihedral groups Multiaxial groups groups Points groups ... Monoclinic Triclinic Cubic Trigonal Orthorhombic Hexagonal Tetragonal Curie’s A n • Sorted by 1 2 3 4 6 Symmetry degree AnA2 • Curie‘s limiting groups 222 32 422 622 2 _ An • Chiral, propers _ _ _ _ _ 1 2=m 3 4 6=3/m • Impropers An/M /m • Centrosymmetric 2/m 4/m 6/m An M 2mm 3m 4mm 6mm m _ An M _ _ _ _ _ 3m 42m (4m2) 62m (6m2) An /MM’ /mm mmm 4/mmm 6/mmm An An’ 23 432 _ An An’ _ _ _ m3 43m m3m /m /m 23 432 532 _ _ _ __ m3 43m m3m 53m Tetrahedron Octahedron Icosahedron Cube Dodecahedron Multiaxial groups Platonic solid Points group: Notations • Hermann-Mauguin (International notation - 1935) • Generators (not minimum) • Symmetry directions • Reflection ( - ): defined by the normal to the plane Primary Direction: higher-order symmetry Secondary directions : lower-order 4 2 2 Notation 4 mm m m m réduite m Tertiary directions : lowest-order • Schönflies : Cn, Dn,Dnh (D4h) The 7 limiting point groups (Curie’s Groups) Rotating cone Axial + polar vector (SO(2)) Twisted cylinder Axial tensor (optical gyration) 2 Rotating cylinder Axial vector (H) /m Cone Polar vector (E, F) (O(2)) m Cylinder Polar tensor (Compressive stress) /mm Rotating sphere Axial scalar (chirality) (SO(3)) Sphere Polar scalar (pressure, mass) (O(3)) /m /m Symmetry of position: periodic order • Lattice : • Set of points (nodes): Ruvw = u a +v b + w c (a, b, c) basis, (u, v, w) integers. c b a b g a • Unit cell : • Volume with no gaps or overlaps, gal parallelepipedic (a,b,c) • Primitive (one node), multiple (symmetry) : elementary (unit cell) • Conventionnal unit cells : P : Primitive F : Face-centred I : Body-centred A,B,C : Base-centred Point symmetry of lattices • Only 1-, 2-, 3- 4-, 6-fold symmetries are compatible with periodicity • Every symmetry axe An is normal to a lattice plane A n A2 A’2 T T a=p a=p a=2p /n • Symmetry of this plane An B B’ • BB’ lattice vector • BB’=T-2Tcosa =mT p cos a a n=2p/a BB' An(T) A-n(-T) -2 -1 p 2 3T cosa =p/2 a -a -1 -0.5 2p/3 3 2T 0 0 p 4 T An T A’n /2 1 0.5 p/3 6 0 2 1 0 1 0 • Tilings • No gaps or overlaps Only symmetry compatible with translation : 1, 2, 3, 4, 6 2 3 5 8 1 4 6 • Kepler (1571-1630) in 1619 : « Harmonices Mundi » Towards Penrose tilling 2D lattices •In 2D • 4 systems (systems) • 5 latttice modes Oblic : p Rectangular : p Rectangular : c Square : p Hexagonal : p •In 3D • Stacking of 2D lattices preserving symmetry (Ex. square) P I P I F C Bravais _ Triclinic 1 lattices a b c a b g b Monoclinic 2/m a b c a = g = 90°; b Orthorhombic 2/mmm a b c a = b = g = 90° • In 3D • 7 systems (symmetry) Tetragonal 4/mmm • 14 lattice modes a = b c a = b = g = 90° _ Rhomboedric 3m a = b = c a = b = g Hexagonal 6/mmm a = b c a=b=90°;g =120° _ Cubic m3m a = b = c a = b = g =90° 32 crystal Trigonal Monoclinique Triclinique Cubique Hexagonal Tétragonal Orthorhombique Orthorhombique classes 1 2 3 4 6 • Crystallographic point groups 222 32 422 622 • 7 crystal systems _ _ _ _ _ 1 2=m 3 4 6=3/m 2/m 4/m 6/m • Holohedral : with the lattice symmetry 2mm 3m 4mm 6mm Ex : Tétragonal (4/mmm) _ _ _ _ _ ... hemihedral, tetarto-hedral 3m 42m (4m2) 62m (6m2) Chiral groups (Direct sym) Centrosym groups (Laue class) mmm 4/mmm 6/mmm Improper groups (ind sym.– inv) 23 432 _ _ _ m3 43m m3m Hexagonal Cubic Relations between the 7 systems Tetragonal • Group/subgroup • Symmetry breaking Trigonal Orthorhombic • Phase transitions Monoclinic L 4 L 2 Triclinic L L+e L L-e L 6 L 3 Space groups • Mauritz Cornelis Escher • Dutch graphic artist (1898-1972) . Groupe P4 (chiral) New symmetries Groupe P4gm Reflections Glide planes Glide planes New symmetries 3D • Glide plane (M,t) • After two reflections M, periodicity T • t=T/2 • Combination (O, t) O : Rotation, Reflection T T : translation • Notation : M a, b, c, n, d, g T/2 • Screw axis (AN, t) • After N translations t periodicity: mc • t = mc/N • Notation : Nm (AN, mc/N) 21 41 42 61 64 Symmetry operations • Rotations • Reflection • Roto-reflections • Glide plane • Screw axis Space groups • 230 space groups • 7 crystalline systems • Notations • Directions (primary, etc.) • Lattice mode • Generators Tetragonal Body centered I41/amd • Point Group • Without translation 4 m m m Symmetry • Linear Symmetry • Symmetry of position • Rotations • Translations • Translations • Roto-reflections • T= u a + v b + w c • Rotations • Roto-reflections _ _ _ • Conventionnally • Symmetry allowed + • 1, 2, 3, 4, 6 ( 3, 4, 6) • Screw axis • M, C • Rotations (An) • Glide plane • Reflections (M) • 14 Bravais lattices • Inversion (C) _ • Roto-inversions (An) Point groups 32 Crystal 230 Space group classes ( 7 systems ) • 7 Curie • 7 crystal systems Phase Transitions Phase I Phase II G1 Tc G2 T •Landau theory : • G1 and G2 have no relation group/sub-group : 1st order transition (sulfur a sulfur b) • G1 sub-group of G2 (G1 G2) An order parameter h can be defined, zero in the symmetrical phase h h • h discontinuous Tc T • h continuous Tc T • 1st order transition • 2nd order transition • Hysteresis, latent heat • Coexistence at critical point • Ferroelectric BaTiO3 • Perovskite ABO3 Order parameter: polarization • T > 120 °C, Cubic Pm3m, paraelectric • 0°C < T < 120 °C, Tetragonal P4mm, ferroelectric P4mm Pm3m, 1st order transition (domains). • -90°C < T < 0 °C, Orthorhombic Cmm2 Cmm2 P4mm, 1st order transition . • T < -90 °C, Rhombohedral R3m R3m Cmm2, 1st order transition . Ba2+, Ti4+, O2- 4 Å O 1er 1er er Ti 1 Rhombohedral Orthorhombic Tetragonal Ba.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    30 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us