A Variational Approach for Water Wave Modelling

A Variational Approach for Water Wave Modelling

AVARIATIONAL APPROACH FOR WATER WAVE MODELLING DENYS DUTYKH1 Senior Research Fellow UCD & Charge´ de Recherche CNRS 1University College Dublin School of Mathematical Sciences NUMERIWAVES Group Meeting ACKNOWLEDGEMENTS COLLABORATOR: Didier Clamond: Professor, LJAD, Universite´ de Nice Sophia Antipolis COLLABORATORS: ◮ Dimitrios Mitsotakis: University of California, Merced, USA ◮ Paul Milewski: University of Bath, UK WATER WAVE PROBLEM J. STOKER: WATER WAVES: THE MATHEMATICAL THEORY WITH APPLICATIONS [STO57] ◮ Continuity equation ∇2 x x,y φ = 0, ( , y) ∈ Ω × [−d,η], ◮ Kinematic bottom condition ∂φ + ∇φ ·∇d = 0, y = −d, ∂y ◮ Kinematic free surface condition ∂η ∂φ +∇φ·∇η = , y = η(x, t), ∂t ∂y ◮ Dynamic free surface condition ∇ ∂φ 1 2 η + |∇x,y φ| +gη+σ∇· = 0, y = η(x, t). ∂t 2 1 + |∇η|2 p HAMILTONIAN STRUCTURE A. PETROV (1964) [PET64]; V. ZAKHAROV (1968) [ZAK68] CANONICAL VARIABLES: η(x, t): free surface elevation φ˜(x, t): velocity potential at the free surface φ˜(x, t) := φ(x, y = η(x, t), t) EVOLUTION EQUATIONS: ∂η δH ∂φ˜ δH ρ = , ρ = − , ∂t δφ˜ ∂t δη HAMILTONIAN: η 1 2 1 2 2 H = |∇x,y φ| dy + gη + σ 1 + |∇η| − 1 Z 2 2 q −d LUKE’S VARIATIONAL PRINCIPLES J.C. LUKE, JFM (1967) [LUK67] First improvement of the classical Lagrangian (L := K − Π): t2 η 1 2 L = ρL dx dt, L := φt + |∇x,y φ| + gy dy Z Z Z 2 t1 Ω −d δφ: ∆φ = 0, (x, y) ∈ Ω × [−d,η], ∂φ ∇ ·∇ δφ|y=−d : ∂y + φ d = 0, y = −d, ∂η ∇ ·∇ ∂φ x δφ|y=η : ∂t + φ η − ∂y = 0, y = η( , t), ∂φ 1 ∇ 2 x δη: ∂t + 2 | φ| + gη = 0, y = η( , t). ◮ We obtain the water wave problem by varying η and φ GENERALIZATION OF THE LAGRANGIAN DENSITY D. CLAMOND &D.DUTYKH,PHYSICA D, (2012), [CD12] φ˜ := φ(x, y = η(x, t), t): quantity at the free surface φˇ := φ(x, y = −d(x, t), t): value at the bottom EQUIVALENT FORM OF LUKE’S LAGRANGIAN: η L ˜ ˇ 1 2 1 2 1 ∇ 2 1 2 = φηt + φdt − gη + gd − | φ| + φy dy 2 2 Z h2 2 i −d INTRODUCE THE VELOCITY FIELD: u = ∇φ, v = φy η 1 2 1 2 2 L = φη˜ t +φˇdt − gη − (u +v )+µ·(∇φ−u)+ν(φy −v) dy 2 Z−d h2 i GENERALIZATION OF THE LAGRANGIAN DENSITY D. CLAMOND &D.DUTYKH,PHYSICA D, (2012), [CD12] RELAXED VARIATIONAL PRINCIPLE: 1 L =(η +µ ˜ ·∇η − ν˜)φ˜ +(d +µ ˇ ·∇d +ν ˇ)φˇ − gη2 t t 2 η 1 2 1 2 + µ · u − u + νv − v +(∇· µ + νy )φ dy Z h 2 2 i −d CLASSICAL FORMULATION: η L ˜ ˇ 1 2 1 ∇ 2 1 2 = φηt + φdt − gη − | φ| + φy dy 2 Z h2 2 i −d DEGREES OF FREEDOM: η,φ; u, v ; µ,ν SHALLOW WATER REGIME CHOICE OF A SIMPLE ANSATZ IN SHALLOW WATER ◮ Ansatz: − u(x, y, t) ≈ u¯(x, t), v(x, y, t) ≈ (y + d)(η + d) 1 v˜(x, t) − φ(x, y, t) ≈ φ¯(x, t),ν(x, y, t) ≈ (y + d)(η + d) 1 ν˜(x, t) ◮ Lagrangian density: 1 2 1 2 1 1 2 L = φη¯ t − gη +(η + d) µ¯ · u¯ − u¯ + ν˜v˜ − v˜ − µ¯ · ∇φ¯ 2 h 2 3 6 i ◮ Nonlinear Shallow Water Equations: ht + ∇· [hu¯] = 0, u¯t +(u¯ ·∇)u¯ + g∇h = 0. CONSTRAINING WITH FREE SURFACE IMPERMEABILITY CONSTRAINT: ν˜ = ηt +µ ¯ ·∇η ◮ Generalized Serre equations [Ser53, GN76]: ht + ∇· [hu¯] = 0, 1 − u¯ + u¯ ·∇u¯ + g∇h + h 1∇[h 2γ˜] = (u¯ ·∇h)∇(h∇· u¯) t 3 −[u¯ ·∇(h∇· u¯)]∇h 2 γ˜ = v˜t + u¯ ·∇v˜ = h (∇· u¯) − ∇· u¯t − u¯ ·∇(∇· u¯) IT CANNOT BE OBTAINED FROM LUKE’S LAGRANGIAN: ∇ ¯ 1 ∇ ∇ ¯ δµ¯: u¯ = φ − 3 v˜ η 6= φ CONSTRAINING WITH FREE SURFACE IMPERMEABILITY CONSTRAINT: ν˜ = ηt +µ ¯ ·∇η ◮ Generalized Serre equations [Ser53, GN76]: ht + ∇· [hu¯] = 0, 1 − u¯ + u¯ ·∇u¯ + g∇h + h 1∇[h 2γ˜] = (u¯ ·∇h)∇(h∇· u¯) t 3 −[u¯ ·∇(h∇· u¯)]∇h 2 γ˜ = v˜t + u¯ ·∇v˜ = h (∇· u¯) − ∇· u¯t − u¯ ·∇(∇· u¯) SOLITARY WAVE SOLUTION (+ CNOIDAL WAVE): κ − η = a sech2 (x − ct), c 2 = g(d + a), (κd)2 = 3a(d + a) 1 2 SERRE EQUATIONS -I TWO-DIMENSIONAL CASE (1DH) ◮ Noncanonical Hamiltonian structure [Li02]: δH ht δq˜ ∂x h 0 1 3 = J , J = − , q˜ = hu¯− 3 (h u¯x )x q˜t δH ∂x q˜ + q˜∂x h∂x δh H = 1 hu¯2 + 1 h3u¯2 + gη2 dx 2 Z 3 x R ◮ Space translations, time translation and Galilean boost lead invariants: ηq˜ Q = dx, H , tq˜ − xη dx Z d + η Z R R SERRE EQUATIONS - II NUMERICAL DISCRETIZATION OF THE SERRE EQUATIONS ◮ The fully discrete 2nd order in space FV scheme: dh¯ 1 (1) (1) = − F (v¯) − F− (v¯) , dt ∆x + dv¯ ∆t (2) (2) (I − M) · = − F (v¯) − F− (v¯) + D(v¯). dt ∆x + ◮ Pseudo-spectral solver: ikd ikdF N(η, u¯) ηˆ + qˆ = −ikF{ηu¯}− , t 1 2 1 2 1 + 3 (kd) 1 + 3 (kd) 1 2 1 2 2 qˆt + ikg ηˆ = ikF 2 u¯ + 2 (d + η) u¯x − qu . REFERENCE [DCMM12]: D. Dutykh, D. Clamond, P. Milewski, D. Mitsotakis. Finite volume and pseudo-spectral schemes for the fully nonlinear ’irrotational’ Serre equations, 2012 SERRE EQUATIONS - III VALIDATION OF THE NUMERICAL SCHEME ◮ Exact solutions: 0.06 0.06 0.05 0.05 0.04 0.04 0.03 0.03 0.02 0.02 (x, 0) (x, 0) η 0.01 η 0.01 0 0 -0.01 -0.01 -0.02 -0.02 -0.03 -0.03 -40 -30 -20 -10 0 10 20 30 40 -40 -30 -20 -10 0 10 20 30 40 x x (a) Solitary wave (b) Cnoidal wave SERRE EQUATIONS - III VALIDATION OF THE NUMERICAL SCHEME ◮ Convergence to the SW solution under the mesh refinement: 0 10 -1 10 -2 10 -3 10 ∞ ε -4 10 -5 10 -6 10 FV UNO2 N-2 Spectral method -7 10 1 2 10 10 N SERRE EQUATIONS - III VALIDATION OF THE NUMERICAL SCHEME ◮ Accuracy of invariants preservation: -2 -2 10 10 |H-H | |Q-Q | ex ex N-2 N-2 -3 -3 10 10 -4 -4 10 10 H(T) Q(T) -5 -5 10 10 -6 -6 10 10 1 2 3 1 2 3 10 10 10 10 10 10 N N (c) Hamiltonian H (d) Momentum Q SERRE EQUATIONS - III VALIDATION OF THE NUMERICAL SCHEME 0.4 0.2 (x,t) η 0 -0.2 40 20 0 10 0 20 -20 30 -40 40 t x HEAD-ON COLLISION EXPERIMENTAL VALIDATION: D.HENDERSON et al. (2006) [CGH+06] −3 −3 x 10 x 10 Simulation Simulation 18 Experimental data 18 Experimental data 16 16 14 14 12 12 ) ) t 10 t 10 , , x x ( 8 ( 8 η η 6 6 4 4 2 2 0 0 −2 −2 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 x x (e) t = 18.5 s (f) t = 18.6 s HEAD-ON COLLISION EXPERIMENTAL VALIDATION: D.HENDERSON et al. (2006) [CGH+06] −3 −3 x 10 x 10 Simulation Simulation 18 Experimental data 18 Experimental data 16 16 14 14 12 12 ) ) t 10 t 10 , , x x ( 8 ( 8 η η 6 6 4 4 2 2 0 0 −2 −2 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 x x (g) t = 18.7 s (h) t = 18.8 s HEAD-ON COLLISION EXPERIMENTAL VALIDATION: D.HENDERSON et al. (2006) [CGH+06] −3 x 10 Simulation 18 Experimental data Simulation 0.025 Experimental data 16 14 0.02 12 ) ) t 10 0.015 t , , x x ( 8 ( η η 6 0.01 4 0.005 2 0 0 −2 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 x x (i) t = 18.92 s (j) t = 19.0 s HEAD-ON COLLISION EXPERIMENTAL VALIDATION: D.HENDERSON et al. (2006) [CGH+06] Simulation Simulation 0.025 Experimental data 0.025 Experimental data 0.02 0.02 ) 0.015 ) 0.015 t t , , x x ( ( η 0.01 η 0.01 0.005 0.005 0 0 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 x x (k) t = 19.05 s (l) t = 19.1 s HEAD-ON COLLISION EXPERIMENTAL VALIDATION: D.HENDERSON et al. (2006) [CGH+06] −3 −3 x 10 x 10 Simulation Simulation 18 Experimental data 18 Experimental data 16 16 14 14 12 12 ) ) t 10 t 10 , , x x ( 8 ( 8 η η 6 6 4 4 2 2 0 0 −2 −2 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 x x (m) t = 19.15 s (n) t = 19.19 s HEAD-ON COLLISION EXPERIMENTAL VALIDATION: D.HENDERSON et al.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    32 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us