Table of Contents

Table of Contents

Contents Foreword, by Ivor Grattan-Guinness ..................................... v Preface ............................................................. vii Illustrations .......................................................... xv History and Geography .............................................. xvii 1 Life and Works................................................... 1 1.1 Biography...................................................... 4 1.1.1 Lucca................................................... 4 1.1.2 Bologna: Studies..........................................7 1.1.3 Pisa ................................................... 10 1.1.4 Turin.................................................. 17 1.1.5 The Bologna Affair....................................... 25 1.1.6 Catania ................................................ 32 1.1.7 Parma ................................................. 44 1.1.8 Afterward .............................................. 47 1.2 Overview of Pieri’s Research...................................... 50 1.2.1 Algebraic and Differential Geometry, Vector Analysis . ......... 50 1.2.2 Foundations of Geometry.................................. 54 1.2.3 Arithmetic, Logic, and Philosophy of Science.................. 58 1.2.4 Conclusion.............................................. 61 1.3 Others........................................................ 62 2 Foundations of Geometry .......................................... 123 2.1 Historical Context ............................................. 125 2.2 Hypothetical-Deductive Systems.................................. 126 2.3 Projective Geometry ........................................... 128 2.4 Inversive Geometry............................................ 137 2.5 Absolute and Euclidean Geometry ................................ 145 2.5.1 Point and Motion ........................................ 145 2.5.2 Point and Sphere ........................................ 153 3Pieri’s Point and Sphere Memoir .................................... 157 3.1 Point and Sphere...§I .......................................... 164 3.2 Orthogonality...§II ............................................ 178 3.3 Points Internal or External...§III................................. 192 3.4 Theorems on Rotations...§IV.................................... 206 3.5 Relations “Smaller Than” and “Larger Than”...§V .................. 220 3.6 Parallelism...§VI.............................................. 229 xii Contents 3.7 Products of Isometries...§VII.................................... 241 3.8 Ordering and Senses...§VIII..................................... 249 3.9 Appendix..................................................... 265 3.10Historical and Critical Remarks.................................. 271 3.10.1 Pieri’s Point and Motion Monograph........................ 271 3.10.2 Hilbert’s Foundations of Geometry ......................... 274 3.10.3 Veblen’s 1904 System of Axioms............................ 277 3.10.4 Pieri’s Point and Sphere Memoir........................... 278 3.10.5 The Definitions ......................................... 278 3.10.6 The Postulates.......................................... 282 3.10.7 Building Geometry ...................................... 283 3.10.8 Other Significant Features................................ 284 3.10.9 Questions Answered..................................... 286 3.10.10New Questions ......................................... 287 4 Foundations of Arithmetic .......................................... 289 4.1 Historical Background.......................................... 290 4.1.1 The Real Number System ................................ 291 4.1.2 The Natural Numbers ................................... 294 4.1.3 Pieri’s Investigation of the Natural Number System........... 305 4.2 Pieri’s 1907 Axiomatization ..................................... 308 4.3 Axiomatizing Natural Number Arithmetic ......................... 313 4.3.1 Dedekind.............................................. 314 4.3.2 Peano................................................. 315 4.3.3 Padoa................................................. 320 4.3.4 Pieri.................................................. 322 4.4 Reception of Pieri’s Axiomatization............................... 326 5 Pieri’s Impact ..................................................... 331 5.1 Peano and Pieri ............................................... 331 5.1.1 Peano’s Background..................................... 332 5.1.2 Peano’s Early Career .................................... 333 5.1.3 Peano’s Ascent ......................................... 335 5.1.4 Pieri and the Peano School................................ 338 5.1.5 Peano’s Decline ......................................... 343 5.2 Pieri and Tarski............................................... 347 5.2.1 Foundations of the Geometry of Solids ....................... 349 5.2.2 Tarski’s System of Geometry.............................. 350 5.2.3 1929–1959 ............................................. 351 5.2.4 What Is Elementary Geometry? ............................ 353 5.2.5 Basing Geometry on a Single Undefined Relation ............. 357 5.3 Pieri’s Legacy................................................. 363 5.3.1 Peano and Pieri......................................... 363 5.3.2 Pieri and Tarski ........................................ 367 5.3.3 In the Shadow of Giants.................................. 369 5.3.4 In the Future........................................... 370 Contents xiii 6 Pieri’s Works ...................................................... 373 6.1 Differential Geometry .......................................... 374 6.2 Algebraic Geometry............................................ 374 6.2.1 Beginnings ............................................. 375 6.2.2 Tangents and Normals................................... 375 6.2.3 Enumerative Geometry .................................. 376 6.2.4 Birational Transformations............................... 377 6.3 Vector Analysis................................................ 378 6.4 Foundations of Geometry ....................................... 379 6.4.1 Projective Geometry..................................... 379 6.4.2 Elementary Geometry ................................... 381 6.4.3 Inversive Geometry...................................... 381 6.5 Arithmetic, Logic, and Philosophy of Science........................381 6.6 Letters ...................................................... 382 6.7 Further Works ................................................ 392 6.7.1 Translations, Edited and Revised .......................... 393 6.7.2 Reviews............................................... 393 6.7.3 Lecture Notes .......................................... 397 6.7.4 Collections............................................. 398 6.7.5 Memorials to Pieri ...................................... 399 Bibliography ........................................................ 401 Permissions ......................................................... 459 Index .............................................................. 463 Illustrations Portraits Mario Pieri ............................................frontispiece, 24, 130 Augusto Righi ......................................................... 9 Silvio Pieri and his daughter ............................................. 9 Enrico Betti .......................................................... 13 Luigi Bianchi ........................................................ 13 Ulisse Dini ........................................................... 13 Enrico D’Ovidio ...................................................... 21 Federigo Enriques ..................................................... 24 Mario Pieri .......................................................... 24 Eugenio Bertini ....................................................... 30 Luigi Cremona ........................................................ 30 Salvatore Pincherle .................................................... 30 Vito Volterra .......................................................... 30 Virginia Pieri and Paolo Anastasio ....................................... 37 Pieri’s sister Gemma and her sons ........................................ 39 Pieri and relatives ..................................................... 39 Angiolina Pieri ....................................................... 45 Beppo Levi ........................................................... 45 Corrado Segre ........................................................ 55 Cesare Burali-Forti .................................................... 55 Felix Klein ........................................................... 55 Mario Pieri ......................................................... 130 Moritz Pasch ........................................................ 132 Gino Fano .......................................................... 132 Giuseppe Veronese .................................................... 132 G. K. C. von Staudt ................................................... 136 Theodor Reye ........................................................ 136 August F. Möbius ..................................................... 144 B. L. van der Waerden ................................................. 144 Gino Loria .......................................................... 152 David Hilbert ........................................................ 275 Oswald Veblen ......................................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    6 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us