Astronomy & Astrophysics manuscript no. A14˙Simulations c ESO 2016 August 13, 2016 Planck 2015 results. XII. Full Focal Plane simulations Planck Collaboration: P. A. R. Ade87, N. Aghanim60, M. Arnaud75, M. Ashdown71;5, J. Aumont60, C. Baccigalupi86, A. J. Banday95;9, R. B. Barreiro66, J. G. Bartlett1;68, N. Bartolo31;67, E. Battaner97;98, K. Benabed61;94, A. Benoˆıt58, A. Benoit-Levy´ 25;61;94, J.-P. Bernard95;9, M. Bersanelli34;49, P. Bielewicz84;9;86, J. J. Bock68;11, A. Bonaldi69, L. Bonavera66, J. R. Bond8, J. Borrilly14;90, F. R. Bouchet61;89, F. Boulanger60, M. Bucher1, C. Burigana48;32;50, R. C. Butler48, E. Calabrese92, J.-F. Cardoso76;1;61, G. Castex1, A. Catalano77;74, A. Challinor63;71;12, A. Chamballu75;16;60, H. C. Chiang28;6, P. R. Christensen85;37, D. L. Clements56, S. Colombi61;94, L. P. L. Colombo24;68, C. Combet77, F. Couchot73, A. Coulais74, B. P. Crill68;11, A. Curto66;5;71, F. Cuttaia48, L. Danese86, R. D. Davies69, R. J. Davis69, P. de Bernardis33, A. de Rosa48, G. de Zotti45;86, J. Delabrouille1, J.-M. Delouis61;94, F.-X. Desert´ 54, C. Dickinson69, J. M. Diego66, K. Dolag96;81, H. Dole60;59, S. Donzelli49, O. Dore´68;11, M. Douspis60, A. Ducout61;56, X. Dupac39, G. Efstathiou63, F. Elsner25;61;94, T. A. Enßlin81, H. K. Eriksen64, J. Fergusson12, F. Finelli48;50, O. Forni95;9, M. Frailis47, A. A. Fraisse28, E. Franceschi48, A. Frejsel85, S. Galeotta47, S. Galli70, K. Ganga1, T. Ghosh60, M. Giard95;9, Y. Giraud-Heraud´ 1, E. Gjerløw64, J. Gonzalez-Nuevo´ 20;66, K. M. Gorski´ 68;99, S. Gratton71;63, A. Gregorio35;47;53, A. Gruppuso48, J. E. Gudmundsson28, F. K. Hansen64, D. Hanson82;68;8, D. L. Harrison63;71, S. Henrot-Versille´73, C. Hernandez-Monteagudo´ 13;81, D. Herranz66, S. R. Hildebrandt68;11, E. Hivon61;94, M. Hobson5, W. A. Holmes68, A. Hornstrup17, W. Hovest81, K. M. Huffenberger26, G. Hurier60, A. H. Jaffe56, T. R. Jaffe95;9, W. C. Jones28, M. Juvela27, A. Karakci1, E. Keihanen¨ 27, R. Keskitalo14, K. Kiiveri27;44, T. S. Kisner79, R. Kneissl38;7, J. Knoche81, M. Kunz18;60;2, H. Kurki-Suonio27;44, G. Lagache4;60, J.-M. Lamarre74, A. Lasenby5;71, M. Lattanzi32, C. R. Lawrence68, R. Leonardi39, J. Lesgourgues62;93, F. Levrier74, M. Liguori31;67, P. B. Lilje64, M. Linden-Vørnle17, V. Lindholm27;44, M. Lopez-Caniego´ 39;66, P. M. Lubin29, J. F. Mac´ıas-Perez´ 77, G. Maggio47, D. Maino34;49, N. Mandolesi48;32, A. Mangilli60;73, M. Maris47, P. G. Martin8, E. Mart´ınez-Gonzalez´ 66, S. Masi33, S. Matarrese31;67;42, P. McGehee57, P. R. Meinhold29, A. Melchiorri33;51, J.-B. Melin16, L. Mendes39, A. Mennella34;49, M. Migliaccio63;71, S. Mitra55;68, M.-A. Miville-Deschenesˆ 60;8, A. Moneti61, L. Montier95;9, G. Morgante48, D. Mortlock56, A. Moss88, D. Munshi87, J. A. Murphy83, P. Naselsky85;37, F. Nati28, P. Natoli32;3;48, C. B. Netterfield21, H. U. Nørgaard-Nielsen17, F. Noviello69, D. Novikov80, I. Novikov85;80, C. A. Oxborrow17, F. Paci86, L. Pagano33;51, F. Pajot60, D. Paoletti48;50, F. Pasian47, G. Patanchon1, T. J. Pearson11;57, O. Perdereau73, L. Perotto77, F. Perrotta86, V. Pettorino43, F. Piacentini33, M. Piat1, E. Pierpaoli24, D. Pietrobon68, S. Plaszczynski73, E. Pointecouteau95;9, G. Polenta3;46, G. W. Pratt75, G. Prezeau´ 11;68, S. Prunet61;94, J.-L. Puget60, J. P. Rachen22;81, R. Rebolo65;15;19, M. Reinecke81, M. Remazeilles69;60;1, C. Renault77, A. Renzi36;52, I. Ristorcelli95;9, G. Rocha68;11, M. Roman1, C. Rosset1, M. Rossetti34;49, G. Roudier1;74;68, J. A. Rubino-Mart˜ ´ın65;19, B. Rusholme57, M. Sandri48, D. Santos77, M. Savelainen27;44, D. Scott23, M. D. Seiffert68;11, E. P. S. Shellard12, L. D. Spencer87, V. Stolyarov5;91;72, R. Stompor1, R. Sudiwala87, D. Sutton63;71, A.-S. Suur-Uski27;44, J.-F. Sygnet61, J. A. Tauber40, L. Terenzi41;48, L. Toffolatti20;66;48, M. Tomasi34;49, M. Tristram73, M. Tucci18, J. Tuovinen10, L. Valenziano48, J. Valiviita27;44, B. Van Tent78, P. Vielva66, F. Villa48, L. A. Wade68, B. D. Wandelt61;94;30, I. K. Wehus68, N. Welikala92, D. Yvon16, A. Zacchei47, and A. Zonca29 (Affiliations can be found after the references) Preprint online version: August 13, 2016 ABSTRACT We present the 8th Full Focal Plane simulation set (FFP8), deployed in support of the Planck 2015 results. FFP8 consists of 10 fiducial mission realizations reduced to 18 144 maps, together with the most massive suite of Monte Carlo realizations of instrument noise and CMB ever generated, comprising 104 mission realizations reduced to about 106 maps. The resulting maps incorporate the dominant instrumental, scanning, and data analysis effects; remaining subdominant effects will be included in future updates. Generated at a cost of some 25 million CPU-hours spread across multiple high-performance-computing (HPC) platforms, FFP8 is used for the validation and verification of analysis algorithms, as well as their implementations, and for removing biases from and quantifying uncertainties in the results of analyses of the real data. Key words. cosmology: cosmic background radiation – cosmology: observations – methods: data analysis –methods: high performance computing 1. Introduction an all-sky survey (Planck Collaboration I 2014) approximately 1 every six months until it was decommissioned in October 2013. Planck is the third satellite to study the cosmic microwave back- Planck carried two instruments. The High Frequency Instrument arXiv:1509.06348v1 [astro-ph.CO] 21 Sep 2015 ground (CMB) radiation. (HFI; Lamarre et al. 2010; Planck HFI Core Team 2011), com- Launched in May 2009, Planck started its science observa- prising 52 detectors2 at six frequencies (100, 143, 217, 353, 545, tions from the L2 Lagrange point in August 2009 and completed and 857 GHz), completed its observations when its cryogens were exhausted in January 2012 after almost five surveys, while y Corresponding author: J. Borrill [email protected] the Low Frequency Instrument (LFI; Bersanelli et al. 2010; 1 Planck (http://www.esa.int/Planck) is a project of the Mennella et al. 2011), comprising 22 detectors at three frequen- European Space Agency (ESA) with instruments provided by two sci- cies (30, 44, and 70 GHz) continued operating throughout the entific consortia funded by ESA member states and led by Principal satellite lifetime, completing more than eight surveys. Investigators from France and Italy, telescope reflectors provided through a collaboration between ESA and a scientific consortium led and funded by Denmark, and additional contributions from NASA 2 The data from two detectors proved to be unusable, so only 50 de- (USA). tectors are included in the analysis. 1 Planck Collaboration: Full Focal Plane Simulations The second release of Planck data (hereafter PR2-2015) is FFP8, Sect.5 covers the key HPC aspects of FFP8, and Sect.6 based on five HFI and eight LFI surveys (LFI Survey 9 having summarizes the results. been reserved for atypical scans designed to assist in the under- standing of systematic effects), and for the first time includes results in polarization as well as intensity. PR2-2015 is accom- 2. Specifications panied by a suite of papers, of which this is one, together with The FFP8 simulations include a set of fiducial mission realiza- an online explanatory supplement, an ESA legacy data archive tions together with separate sets of Monte Carlo realizations (http://pla.esac.esa.int/pla/) and NASA partial mir- of the CMB and the instrument noise. They contain the domi- ror (http://irsa.ipac.caltech.edu/Missions/planck. nant instrumental (detector beam, bandpass, and correlated noise html), as well as resources to access and manipulate the properties), scanning (pointing and flags), and analysis (map- full simulation suite described here (http://crd.lbl.gov/ making algorithm and implmentation) effects. cmb-data). In addition to the baseline maps made from the data from all Simulations play a number of important roles in the analysis detectors at a given frequency for the entire mission, there are a of these Planck data, including: number of data cuts that are mapped both for systematics tests and to support cross-spectral analyses. These include: 1. validating and verifying tools used to measure instrument characteristics by simulating data with known instrument – detector subsets (“detsets”), comprising the individual unpo- characteristics, applying the tools used on the real data to larized detectors and the polarized detector quadruplets cor- measure these, and verifying the accuracy of their recovery; responding to each leading/trailing horn pair;5 2. quantifying systematic effect residuals by simulating data – mission subsets, comprising the surveys, years, and half- with some particular systematic effect included, applying the missions, with exact boundary definitions given in Planck treatment used on the real data to ameliorate that effect, and Collaboration II(2015) and Planck Collaboration VII(2015) measuring the residuals; for LFI and HFI, respectively; and 3. validating and verifying data analysis algorithms and their – half-ring subsets, comprising the data from either the first or implementations by simulating data with known science in- the second half of each pointing-period ring, puts (cosmology and foreground sky) and detector charac- teristics (beam, bandpass, and noise spectrum), applying the The various combinations of these data cuts then define 1 134 analyses used on the real data to extract this science, and maps, as enumerated in the top section of Table1. The di ffer- verifying the accuracy of its recovery; ent types of map are then named according to their included de- 4. debiasing and quantifying uncertainties in the analysis of the tectors (channel or detset), interval (mission, half-mission, year real data by generating massive sets of Monte Carlo (MC) or survey), and ring-content (full or half-ring); for example the realizations of both the noise and the CMB and passing them baseline maps are described as channel/mission/full, etc.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages29 Page
-
File Size-