MID-INFRARED INTERFEROMETRY of YOUNG STELLAR OBJECTS: Detection of a Hot Component Inside the Circumbinary Cavity of V892 Tau

MID-INFRARED INTERFEROMETRY of YOUNG STELLAR OBJECTS: Detection of a Hot Component Inside the Circumbinary Cavity of V892 Tau

MID-INFRARED INTERFEROMETRY OF YOUNG STELLAR OBJECTS: Detection of a hot component inside the circumbinary cavity of V892 Tau INAUGURAL-DISSERTATION zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultat¨ der Universitat¨ zu Koln¨ vorgelegt von Juan Andres´ Cahuasqu´ı Llerena aus Ambato, Ecuador Koln¨ 2019 Berichterstatter/in: Prof. Dr. Lucas Labadie Prof. Dr. Astrid Kiendler-Scharr Tag der mundlichen¨ Prufung:¨ 25. Oktober 2018 Abstract Stars are the essential elements of the universe that govern the evolution of galaxies and the interstellar medium. The star formation process carries two ubiquitous byproducts that dispose the excess of angular momentum: binary or higher-order stellar systems, and the formation of circumstellar disks surrounding most – if not all – stars. Although these two outputs embrace a wide field of astronomy by their own, the link between them seems to be a natural consequence. Namely, stellar and substellar companions forming multiple systems dynamically perturb primordial circumstellar disks and settle the conditions for planets to grow in such scenario. Due to their young age (<10 Myr) and observability after dispersing part of their gaseous and dusty envelope, the low-mass T Tauri (<2 M ) and the intermediate-mass Herbig Ae/Be (2–10 M ) stellar objects in the pre-main sequence phase are ideal laboratories to characterize protoplanetary disks. At this stage, observations with different techniques and at different wavelengths allow to investigate the star-disk environment through strong emission lines indicative of accretion of gas onto the central star, excess emission at infrared and longer wavelengths, and resolved thermal and scattered light. Additionally, a more advanced evolutionary stage in the so-called transition disks may be identified via dust-depleted cavities as consequence of forming planets, photoevaporation, self-shadowing or a dead zone inside the disk. Numerical simulations and dedicated surveys of T Tauri binary systems have revealed that the influence of the stellar companions depends on the orbital parameters and masses of the components. The evolution of disks in close binary (<1 AU) and large-separation systems (>100 AU) seems well understood. Whereas for the first case both stars would be surrounded by a common circumbinary disk, the large-separated stars may host independent circumstellar disks whose evolution is indistinct to disks around single objects. On the contrary, the understanding of intermediate-separation systems is poorer, and the disk lifetime seems to be reduced to ∼10% of the typical life expectancy because of tidal truncation effects. Nonetheless, as evidenced by some multiple objects (e.g. GG Tau A), circumbinary plus circumstellar components may coexist, and the feeding from one to another through streamers may extend the disk lifetime for planets to assemble. For Herbig stars, the bigger masses and gravitational forces at play can apparently cause a faster disk disruption. Still, observational evidence and statistical surveys to understand the spatial distribution of dust and gas, and the possibility of their survival in the inner environment are scarcer, with even only few known objects that harbour circumbinary disks. In particular, the Herbig Ae/Be object V892 Tau, also known as Elias 1, is a near-equal brightness binary system located in the Taurus-Auriga star-forming region, located at 140 pc, known to be surrounded by a large circumbinary disk. The stellar pair has a separation of ∼7 AU, and the circumbinary component has an inner radius of ∼18 AU. This doctoral thesis aims at contributing in the understanding of the central circumstellar environment of Herbig binary systems by taking advantage of the high-angular (milliarcsec- i ond) resolution provided by long-baseline interferometry, and offers the first mid-infrared multi-epoch interferometric study of V892 Tau. Due to its sensitivity to thermal emission of dust with temperatures of the order ∼100–1000 K, the MID-infrared Interferometric instrument (MIDI) at the Very Large Telescope Interferometer (VLTI) allows to resolve dusty structures within the circumbinary cavity of this particular object. The mid-IR (8–13 µm) interferometric data consisting of visibilities and differential phases, in conjunction with photometric measurements, is modelled with a temperature- gradient approach and χ2-minimization algorithms. This method allows to scrutinize the geometry of the system and discuss the possibility of dust survival within an environment affected by tidal interaction and strong gravitational forces that settle the conditions for planetary growth. By investigating different possible morphologies capable of achieving a satisfactory fit to the mid-IR observations of V892 Tau, I conclude that a disk-like dusty source in the central vicinity of the stars is the most plausible origin of near-IR flux. This newly proposed component reproduces well the photometric measurements and causes a brightness asym- metry which influences the MIDI visibilities and differential phases. Moreover, the profit of this multi-epoch study reveals that this detected source is presumably unattached to any of the stars and possesses signs of variability over the five observing runs covering a 9-year period. Nevertheless, the application of semi-physical models to reproduce interferometric signals and the detection of this near-IR floating component based on N-band data suggest caution with the interpretation of this finding. Although the outcomes clearly expose the existence of a dusty structure, a follow-up investigation with the newest second generation of interferometers and high-resolution direct imaging techniques is required to certainly determine its morphology. Granted K-band observations in forthcoming periods of V892 Tau with both astronomical techniques will complement this project and offer a wider insight into the field of planet formation and disk evolution in intermediate-separation binary Herbig objects. ii Zusammenfassung Sterne sind die wesentlichen Elemente des Universums, die die Entwicklung der Galax- ien und des interstellaren Mediums bestimmen. Der Sternentstehungsprozess tragt¨ zwei allgegenwartige¨ Nebenprodukte, die den Uberschuss¨ an Drehimpuls abgeben: binare¨ oder hoherwertige¨ Sternensysteme und die Bildung von zirkumstellaren Scheiben, von denen die meisten - wenn nicht alle - Sterne umgeben. Obwohl diese beiden Ergebnisse ein weites Feld der Astronomie umfassen, scheint die Verbindung zwischen ihnen eine naturliche¨ Konsequenz zu sein. Stellare und (sub)stellare Begleiter, die mehrere Systeme bilden, storen¨ dynamisch primordiale zirkumstellare Scheiben und regeln die Bedingungen fur¨ das Wachstum von Planeten in einem solchen Szenario. Dank ihres jungen Alters (<10 Myr) und ihrer guten Moglichkeit¨ zur Beobachtung, nach- dem sie einen Teil ihrer gasformigen¨ und staubigen Hulle¨ verteilt haben, sind die massearmen T Tauri (<2 M ) und die Zwischenmassen Herbig Ae/Be (2–10 M ) stellare Objekte in der Phase vor der Hauptsequenz ideale Laboratorien, um protoplanetare Scheiben zu charakter- isieren. In diesem Stadium erlauben Beobachtungen mit verschiedenen Techniken und bei verschiedenen Wellenlangen¨ die Untersuchung der Stern-Scheibe-Umgebung durch starke Emissionslinien, die eine Anreicherung von Gas auf den Zentralstern, ubersch¨ ussige¨ Emis- sion bei Infrarot- und langeren¨ Wellenlangen¨ und aufgelostes¨ thermisches und gestreutes Licht anzeigen. Zusatzlich¨ kann uber¨ staubarme Hohlraume¨ als Folge von Planetenbildung, Photoverdampfung, Selbstbeschattung oder einer Totzone innerhalb der Scheibe ein weiter fortgeschrittenes Entwicklungsstadium in den sogenannten Ubergangsscheiben¨ identifiziert werden. Numerische Simulationen und spezielle Untersuchungen von T Tauri-Binarsystemen¨ haben gezeigt, dass der Einfluss der stellaren Begleiter von den Bahnparametern und Massen der Komponenten abhangt.¨ Die Entwicklung von Scheiben in engen binaren¨ (<1 AU) und Systemen mit großer Separation (>100 AU) scheint gut verstanden. Wahrend¨ im ersten Fall die Sterne nur von einer umlaufenden Scheibe umgeben sind, konnen¨ die großseparierten Sterne unabhangige¨ zirkumstellare Scheiben beherbergen, deren Entwicklung ahnlich¨ zu Scheiben um einzelne Objekte ist. Im Gegenteil, das Verstandnis¨ von Systemen mit mittlerer Separation ist schlechter, und die Lebensdauer der Scheiben scheint aufgrund von Gezeiten- abschneidungseffekten auf ∼10% der typischen Skalen reduziert zu sein. Nichtsdestotrotz konnen,¨ wie einige Mehrfachobjekte (z.B. GG Tau A) zeigen, zircumbinare¨ plus zirkumstel- lare Komponenten koexistieren und die Zufuhrung¨ von einem zum anderen durch Streamer kann die Lebensdauer der Scheibe verlangern,¨ damit sich Planeten zusammensetzen konnen.¨ Fur¨ Herbig-Sterne konnen¨ die großeren¨ Massen und Gravitationskrafte¨ offenbar eine schnellere Disruption der Scheibe verursachen. Dennoch sind Beobachtungsdaten und statistische Erhebungen zum Verstandnis¨ der raumlichen¨ Verteilung von Staub und Gas und der Moglichkeit¨ ihres Uberlebens¨ in der inneren Umgebung seltener, mit nur wenigen bekannten Objekten, die umlaufende Scheiben beherbergen. Insbesondere das Herbig Ae/Be-Objekt V892 Tau, auch bekannt als Elias 1, ist ein nahezu iii gleich-helles binares¨ System, das sich in der Taurus-Auriga-Sternbildungsregion befindet, die bei 140 pc liegt und bekanntermaßen von einer großen zirkumbinaren¨ Scheibe umgeben ist. Das stellare Paar hat eine Trennung von ∼7 AU, und die Umfangskomponente

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    201 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us