
First-principles Modeling of Anode/Electrolyte Interfaces in Beyond Li-ion Batteries by Jeffrey S. Lowe A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Chemical Engineering) in the University of Michigan 2019 Doctoral Committee: Assistant Professor Heather Mayes, Co-Chair Associate Professor Donald Siegel, Co-Chair Assistant Professor Neil Dasgupta Professor Johannes W. Schwank Jeffrey S. Lowe [email protected] ORCID iD: 0000-0002-0816-9105 © Jeffrey S. Lowe 2019 Acknowledgements I first want to acknowledge the financial support. This work was supported by the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, and by the U.S. National Science Foundation. In addition, the University of Michigan provided funding for me to present this work at external conferences. I want to thank my committee members Professors Heather Mayes, Neil Dasgupta, Johannes Schwank, and my advisor Prof. Don Siegel for providing feedback and guidance on my dissertation. I especially want to thank Prof. Don Siegel for all the years of guidance during my dissertation work. He set a great example for a faculty member to excel both in research and in teaching. All of my current and former research group members, particularly those that I have collaborated with on publications: Dr. Jason Lai, Dr. Alauddin Ahmed, Steven Kiyabu, and Dr. Nitin Kumar. I want to acknowledge Alauddin Ahmed for all of his support; he has shown me the path towards an academic position. Special thanks to all of the other chemical engineering graduate students who lifted me up along the way and with whom I have formed lifelong friendships. The wonderful faculty and staff who have supported me both formally and informally. They’re the people that make the University of Michigan the great place that it is. The Chemical Engineering Graduate Coordinator Susan Hamlin, the Coordinator of Graduate Programs in the College of Engineering Andria Rose, the Director of Undergraduate Studies, Undergraduate Program Advisor, and wonderful mentor Dr. Susan Montgomery, and so many others. In particular, I want to thank Dr. Montgomery for mentoring me in teaching and in all the informal areas that often go undiscussed in the academy, but that have been so crucial in my development as a researcher. Finally, and most importantly, I would like to give a heartfelt thanks to my family. My wife Alex Rafalski has been very supportive of me throughout this process. I want to thank her for every sacrifice that she’s made along the way, and for everything she’s done to help me get to the finish line. From taking on more chores when my work schedule was busy to giving me encouragement at difficult times. I also want to thank my entire family, especially my parents Chris and Diane ii Lowe, my sister Amy Cirillo, and my brother Nicholas Lowe. They have supported me unconditionally my whole life and have always encouraged me to follow my passions. This dissertation was only possible because of them. iii Table of Contents Acknowledgements ....................................................................................................................... ii List of Tables ................................................................................................................................ vi List of Figures .............................................................................................................................. vii Abstract .......................................................................................................................................... x Chapter 1: Introduction ............................................................................................................... 1 1.1 Beyond state-of-the-art Li-ion batteries ............................................................................ 1 1.2 Metallic anode/electrolyte interfaces ................................................................................. 3 1.3 Magnesium metal batteries ................................................................................................ 5 1.4 Lithium metal batteries ...................................................................................................... 6 1.4.1 Protection strategies for lithium anodes ......................................................................... 7 1.4.2 Native oxide layer on lithium metal ............................................................................... 7 1.5 Goals and outline of this dissertation ................................................................................ 8 Chapter 2: Methodology ............................................................................................................. 10 2.1 Density functional theory ................................................................................................. 10 2.2 Plane wave DFT ................................................................................................................ 12 2.3 Nudged elastic band method ............................................................................................ 13 2.4 Charge partitioning .......................................................................................................... 13 2.5 Core-level binding energy shifts ...................................................................................... 14 2.6 Ab initio molecular dynamics ........................................................................................... 15 2.7 Mean-squared displacement and diffusion coefficients ................................................. 18 Chapter 3: Reaction pathways for solvent decomposition on magnesium anodes ............... 20 3.1 Introduction ....................................................................................................................... 20 3.2 Methodology ...................................................................................................................... 22 3.3 Results and discussion ...................................................................................................... 25 3.3.1 Thermodynamics of DME decomposition ................................................................... 25 3.3.2 Reaction barriers for DME decomposition .................................................................. 31 3.3.3 Charge-transfer analysis ............................................................................................... 33 3.4 Conclusions ........................................................................................................................ 37 iv Chapter 4: Adhesive strength of a graphene oxide membrane for lithium anode protection ....................................................................................................................................................... 39 4.1 Introduction ....................................................................................................................... 39 4.2 Methodology ...................................................................................................................... 40 4.3 Results and discussion ...................................................................................................... 41 4.4 Conclusions ........................................................................................................................ 45 Chapter 5: Modeling the interface between lithium metal and its native oxide ................... 46 5.1 Introduction ....................................................................................................................... 46 5.2 Methodology ...................................................................................................................... 48 5.2.1 Slab supercell model .................................................................................................... 48 5.2.2 Oxidized slab model .................................................................................................... 50 5.3 Results and discussion ...................................................................................................... 52 5.3.1 Constructing the slab supercell model ......................................................................... 52 5.3.2 Constructing the oxidized slab model .......................................................................... 53 5.3.3 Structural analysis ........................................................................................................ 54 5.3.4 Li-ion transport ............................................................................................................ 63 5.4 Conclusions ........................................................................................................................ 64 Chapter 6: Conclusions and future work ................................................................................. 66 6.1 Magnesium metal batteries .............................................................................................. 66 6.2 Lithium metal batteries .................................................................................................... 67 6.3 Future work ....................................................................................................................... 68 References ...................................................................................................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages89 Page
-
File Size-