Friction of Polymer Gels O

Friction of Polymer Gels O

FRICTION OF POLYMER GELS O. Ronsin, T. Baumberger, C. Caroli Institut des NanoSciences de Paris - CNRS - Univ. Paris 6 Gels = soft elastic solid with high content of fluid = poroelastic solid ñ specific frictionnal properties ­ e.g. : gels in biological systems : very low friction (e.g. articular cartilage) ­ Network / solvent contributions to friction ? POROELASTIC EFFECTS : ARTICULAR CARTILAGE (COLLAGEN GEL) Poroelastic transfer of fluid across cartilage Ñ load supported by fluid at short times low friction : fluid lubrication Ñ increasing contribution of matrix as t Õ higher friction : solid friction Wfluid = 1 ¡ (1 ¡ ) µ µ8 φ µ Wtotal ¶ C. W. McCutchen, Wear 5, 1 (1959). G. A. Ateshian, Journal of Biomechanics 42, 1163 (2009). POLYMER GELS = + Æ ­ network chains cross-links (physical or chemical), distance ξ ­ solvent (90–99%), viscosity η η ñ "poro-elastic" material ­ elasticity of entropic origin (rubber) kBT 2 5 ξ G 10 – 10 Pa, ξ 3 – 30 nm. ξ3 ­ solvent/network relative motion ñ diffusive mode ¡ 9 ¡11 2 ¡1 Dcoll. 10 – 10 m .s for aqueous gels (10¡7m2.s¡1 for cartilage) 5 7 ñ 10 ¡ ¡10 s for 1 cm thick sample ñ get rid of time dependence of fluid loaded part. HYDRODYNAMIC FRICTION OF GELATIN GELS Model system : gelatin gel on clean flat glass in plane/plane contact. + Ñ control almost independently solvent viscosity ηS 1 ¡ 4 Pa.s (water glycerol) and network mesh size ξ 6 ¡ 12 nm (gelatin contentration c) gel glass impose ­ sliding velocity V (1 – 2000 µm/s) ­ normal pressure p (0 – 2 kPa) measure ­ stationnary frictionnal shear stress σ(V ). ­ interfacial slip. HYDRODYNAMIC FRICTION OF GELATIN GELS Changing solvent viscosity ηS Changing gelatin concentration 2.5 0% c Õñ G Õñ ξ × 6 21% 2 42% 5% 5 8% 10% 1.5 15% 4 (kPa) 1 3 (kPa) 2 0.5 1 0 0 500 1000 1500 2000 0 V ( m/s) 0 500 1000 1500 2000 V ( m/s) V ñ Response of a confined layer ξ of thickness ξ ? T. Baumberger, C. Caroli and O. Ronsin, Eur. Phys. J. E 11, 85 (2003). HYDRODYNAMIC FRICTION OF GELATIN GELS V layer sheared at a rate γ˙ = V /ξ σξ measured effective visosity ηeff = V ξ relaxation time τR of a chain of size ξ (Rouse) 100 ηeff ¡α = γτ˙ R , α 0.6 compatible ηs with macroscopic¡ ¢ rheology of solutions. s / 10 eff 1 0.01 0.1. 1 10 R HYDRODYNAMIC FRICTION OF GELATIN GELS V layer sheared at a rate γ˙ = V /ξ σξ measured effective visosity ηeff = V ξ relaxation time τR of a chain of size ξ (Rouse) 100 ηeff ¡α = γτ˙ R , α 0.6 compatible ηs with macroscopic¡ ¢ rheology of solutions. Also observed with block copolymer gels s / 10 eff 1 0.01 0.1. 1 10 R K.A. Erk et al., Langmuir, 28, 4472 (2012). EFFECT OF NORMAL STRESS 1.4 1.2 p V 1 0.8 V (kPa) 0.6 σ (1+ε)ξ 0.4 0.2 0 -4 -3 -2 -1 0 1 2 -po p (kPa) = p p = ¡ deformation under compression ǫ ¡ E 3G + ñ layer thickness (1 ǫ)ξ = = p ñ σ(V, p) σ(V, p 0) 1 + (1 + 3α) h 3G i 3G p0 = G 1 + 3α STATIC FRICTION 1.2 1 1 0.8 max 0.8 0.6 0.6 (kPa) (kPa) 0.4 0.4 0.2 0.2 tw 0 0 0 2 4 6 8 10 12 14 16 0 5 10 15 20 65 70 75 80 t (s) t (s) Increase of the number of pinned chains with time. ñ Decrease of the number of pinned chains with velocity. ELASTIC CONTRIBUTION TO GEL FRICTION Schallamach model of rubber friction : dynamics of chain pinning/depinning V thermally activated depinning + advection at velocity V f ñ number of pinned chains × with V F ñ force per chain Õ with V N < µm/s ln V A. Schallamach, Wear, vol. 6, p. 375 (1963) POLYMER GELS FRICTION two contributions: σ ­ chain pinning ­ viscosity of interfacial layer V POLYMER GELS FRICTION two contributions: σ ­ chain pinning ­ viscosity of interfacial layer ñ instability at Vc (compliant system imposed stress) Vc V 0.7 1.2 V > V V < V 0.6 c 1 c 0.5 0.8 0.4 0.6 0.3 0.4 0.2 shear stress (kPa) shear stress (kPa) 0.1 0.2 0 0 0 5 10 15 20 25 30 35 40 0 10 20 30 40 50 60 70 80 time (s) time (s) SLEF-HEALING SLIP PULSES IN GELATIN self-healing slip pulses. Healing when local slip velocity reaches Vc . 100 80 60 40 position (mm) 20 0 52 56 60 64 68 time (s ) O. Ronsin, T. Baumberger and C.Y. Hui, J. Adhesion, vol. 87, p. 504 (2011) SLEF-HEALING SLIP PULSES IN GELATIN nucleation favored at the edge(s) of the contact, but also within the contact. 100 80 60 40 position (mm) 20 0 100 80 60 40 position (mm) 20 0 52 56 60 64 68 time (s) CONCLUSION biphasic nature of gels ñ 2 contributions to friction ­ elastic : (rate-dependent) stretching of adsorbed polymer chains ­ hydrodynamic : viscous flow of fluid interfacial layer relative contributions influenced by many parameters (velocity, pressure, charges, surface chemistry, roughness...) ­ Tuning these parameters to achieve very low friction Ñ artificial cartilage : need for tougher gels ñ double network gels (J.P. Gong et al.). ­ their competition can lead to instabilities ñ model system for earth crust (F. Corbi et al., J.G.R. Solid Earth, vol. 118, p. 1483 (2013))..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    15 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us