Renormalization Group Flows and Supersymmetry

Renormalization Group Flows and Supersymmetry

Renormalization Group Flows and Supersymmetry A. Wipf Theoretisch-Physikalisches Institut, FSU Jena What is Quantum Field Theory? Manolo-Fest, Benasque, September 2011 Andreas Wipf (FSU Jena) Renormalization Group Flows and Supersymmetry 1 / 31 1 Functional renormalization flows 2 Manifest supersymmetric flows for non-gauge models 3 Scale-dependence of super-potential 4 Masses, Phases, Fixed Points, . 5 Exact solution for O(N)-models in large N limit Andreas Wipf (FSU Jena) Renormalization Group Flows and Supersymmetry 2 / 31 strong-coupling phenomena: spectrum, phase transitions, collective condensations, etc. exact solutions: low dimensions, extended symmetry, integrable models, . strong coupling expansions, large N,... lattice simulations: problems: symmetries, doublers, chiral fermions, sign-problem, . =) wish complement to lattice studies functional renormalization group: phase transitions, condensed matter systems, infrared sector of gauge theories, quantum gravity, renormalizability-proofs, . QFT = solution of functional renormalization group equation Andreas Wipf (FSU Jena) Renormalization Group Flows and Supersymmetry 3 / 31 Functional renormalization flow Wilson, Wegner-Houghton, Polchinsky, Wetterich generating functional for n−point functions: formally Z Z[j] = Dφ e−S[φ]+(j,φ) ; W [j] = log Z [j] add momentum- and scale-dependent regulator term to S 1 Z dd p 1 ∆S [φ] = φ∗(p)R (p)φ(p) = (φ, R φ) k 2 (2π)d k 2 k =) scale-dependent generating functionals Z −S[φ]+(j,φ)−∆Sk [φ] Zk [j] = Dφ e ; Wk [j] = log Zk [j] Andreas Wipf (FSU Jena) Renormalization Group Flows and Supersymmetry 4 / 31 Requirements Rk regulates QFT in UV andIR recover full generating functionals in IR: k!0 Rk (p) −! 0 fixed p k!Λ recover classical theory at cutoff Λ: Rk −! 1 =) interpolation between classical and quantum theory IR regularization Rk (p) > 0 for p ! 0 2 2 2 2 e.g. optimized regulator Rk (p) = (k − p ) θ k − p Andreas Wipf (FSU Jena) Renormalization Group Flows and Supersymmetry 5 / 31 compatible with symmetries flow equation for Wk [j]: Polchinsky equation 1 1 @ W = − tr@ R W (2) − W (1);@ R W (1) k k 2 k k k 2 k k k k 0 Wk (n): n th functional derivative of Wk Legendre transform ) scale dependent effective action Γk ['] = (LWk )['] − ∆Sk ['] Γk not necessarily convex, Γ = Γk!0 convex average field $ source δW [j] δΓ '(x) = k ; k = j(x) − (R ')(x) δj(x) δ'(x) k Andreas Wipf (FSU Jena) Renormalization Group Flows and Supersymmetry 6 / 31 exact flow equation for Γk [']: Wetterich equation ! 1 @ R @ Γ ['] = tr k k k k 2 (2) Γk ['] + Rk nonlinear functional differential equation, 1-loop structure denominator: IR regularization numerator: @k Rk peaked at p = k ) quantum fluctuations near momentum shell p ≈ k integrate ’down’: collect quantum fluctuations below cutoff Λ nonperturbative, applicable to QFT’s and statistical systems in particular: supersymmetric QFT’s Andreas Wipf (FSU Jena) Renormalization Group Flows and Supersymmetry 7 / 31 Γk=Λ = S Γk=0 = Γ Theory space Andreas Wipf (FSU Jena) Renormalization Group Flows and Supersymmetry 8 / 31 Challenges supersymmetry: Poincare algebra, fermionic supercharges i ¯j ij µ i j ij fQα; Qα_ g = 2δ σαα_ Pµ ; fQα; Qβg = 2"αβZ symmetry of renormalization flow =) Ward identities ) mass degeneracy, non-renormalization theorems, . dynamical susy breaking =) phase transitions fixed-point structure of susy theories finite temperature effects here: simple susy Yukawa models I d = 2: infinitely many fixed point solutions: superconformal QFT’s I d = 3: two fixed point solutions; susy breaking, finite T ,... Andreas Wipf (FSU Jena) Renormalization Group Flows and Supersymmetry 9 / 31 Wess-Zumino models in 2 and 3 dimensions N = 1: real superfield field content: scalar φ, Majorana , auxiliary F off-shell Yukawa model 1 µ i ¯= 1 2 1 00 ¯ 0 LE = 2 @µφ∂ φ + 2 @ − 2 F + 2 W (φ) γ∗ − FW (φ) eliminate dummy F =) on-shell Yukawa model 1 2 i ¯= 1 0 2 1 00 ¯ LE = 2 (@φ) + 2 @ + 2 W (φ)+ 2 W (φ) γ∗ classical model () superpotential W Witten index ) W (φ) ∼ φm: m even: susy always unbroken m odd: susy breaking possible Andreas Wipf (FSU Jena) Renormalization Group Flows and Supersymmetry 10 / 31 supersymmetric regulator on-shell: no quadratic regulator off-shell: quadratic regulators exist most general solution known, here 1 Z ∆S = d d x φ p2r(p2) φ − ¯ pr= (p2) − r(p2) F 2 k 2 susy ) cut-off functions for component fields related truncation: leading order local potential approximation, Z d 1 µ i ¯= 1 2 1 00 ¯ 0 Γk = d x 2 @µφ∂ φ + 2 @ − 2 F + 2 Wk (φ) γ∗ − Wk (φ)F Georg Bergner, Jens Braun, Holger Gies, Daniel Litim, Marianne Mastaler, Franziska Synatschke-Czerwonka Phys. Rev. D81 (2010) 125001; D80 (2009) 085007; D80 (2009) 101701 JHEP 0903 (2009) 028; ArXiv 1107.3011; including NLO Andreas Wipf (FSU Jena) Renormalization Group Flows and Supersymmetry 11 / 31 Flow of super potential project flow onto F =) flow equation for Wk : k d−1 W 00(φ) @ (φ) = − k k Wk 2 00 2 Ad k + Wk (φ) nonlinear PDE 1 02 Wk =) flow for scalar potential Vk = 2 Wk k = Λ: classical potential k ! 0: convex effective potential flow into susy broken phase: Andreas Wipf (FSU Jena) Renormalization Group Flows and Supersymmetry 12 / 31 10-4x10 k=Λ 8 ) φ ( 6 2 k W' 4 2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 φ Andreas Wipf (FSU Jena) Renormalization Group Flows and Supersymmetry 13 / 31 10-4x10 k=Λ 8 ) φ ( 6 2 k W' 4 2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 φ Andreas Wipf (FSU Jena) Renormalization Group Flows and Supersymmetry 13 / 31 10-4x10 8 ) φ ( 6 2 k W' 4 2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 φ Andreas Wipf (FSU Jena) Renormalization Group Flows and Supersymmetry 13 / 31 10-4x10 8 ) φ ( 6 2 k W' 4 2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 φ Andreas Wipf (FSU Jena) Renormalization Group Flows and Supersymmetry 13 / 31 10-4x10 8 ) φ ( 6 2 k W' 4 2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 φ Andreas Wipf (FSU Jena) Renormalization Group Flows and Supersymmetry 13 / 31 10-4x10 8 ) φ ( 6 2 k W' 4 2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 φ Andreas Wipf (FSU Jena) Renormalization Group Flows and Supersymmetry 13 / 31 10-4x10 8 ) φ ( 6 2 k W' 4 2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 φ Andreas Wipf (FSU Jena) Renormalization Group Flows and Supersymmetry 13 / 31 10-4x10 8 ) φ ( 6 2 k W' 4 2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 φ Andreas Wipf (FSU Jena) Renormalization Group Flows and Supersymmetry 13 / 31 10-4x10 8 ) φ ( 6 2 k W' 4 2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 φ Andreas Wipf (FSU Jena) Renormalization Group Flows and Supersymmetry 13 / 31 10-4x10 8 ) φ ( 6 2 k W' 4 2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 φ Andreas Wipf (FSU Jena) Renormalization Group Flows and Supersymmetry 13 / 31 10-4x10 8 ) φ ( 6 2 k W' 4 2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 φ Andreas Wipf (FSU Jena) Renormalization Group Flows and Supersymmetry 13 / 31 10-4x10 8 ) φ ( 6 2 k W' 4 2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 φ Andreas Wipf (FSU Jena) Renormalization Group Flows and Supersymmetry 13 / 31 10-4x10 8 ) φ ( 6 2 k W' 4 2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 φ Andreas Wipf (FSU Jena) Renormalization Group Flows and Supersymmetry 13 / 31 10-4x10 8 ) φ ( 6 2 k W' 4 2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 φ Andreas Wipf (FSU Jena) Renormalization Group Flows and Supersymmetry 13 / 31 10-4x10 8 ) φ ( 6 2 k W' 4 2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 φ Andreas Wipf (FSU Jena) Renormalization Group Flows and Supersymmetry 13 / 31 10-4x10 8 ) φ ( 6 2 k W' 4 2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 φ Andreas Wipf (FSU Jena) Renormalization Group Flows and Supersymmetry 13 / 31 10-4x10 8 ) φ ( 6 2 k W' 4 2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 φ Andreas Wipf (FSU Jena) Renormalization Group Flows and Supersymmetry 13 / 31 Fixed point structure in 2 dimensions dimensionless quantities t = log(k=Λ); Wk (φ) = kwt (φ) 1 w 00(φ) @ (φ) + (φ) = − t t wt wt 00 2 4π 1 + wt (φ) nonlinear PDE 0 even wt ) susy-breaking possible, Taylor series 0 2 2 4 6 wt (φ) = λt (φ − at ) + b4;t φ + b6;t φ + ::: =) 1-system of coupled ODE’s fixed points: @t w∗ = 0 =) 1-system of algebraic equations Andreas Wipf (FSU Jena) Renormalization Group Flows and Supersymmetry 14 / 31 fixed points continued p linearization: a∗=1= 2π always unstable 2n keep terms up to b2n;t φ =) 2n non-Gaussian fixed points ∗ ∗ ∗ ± λp; b4;p;:::; b2n;p ; p = 1;:::; n ∗ ∗ ordering λn > λn−1 > : : : =) ∗ 2 λn : 1 IR-unstable direction at ∗ λn−1 : 2 IR-unstable directions ∗ λn−2 : 3 IR-unstable directions .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    47 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us