Information Geometry and Quantum Fields

Information Geometry and Quantum Fields

Information Geometry and Quantum Fields Kevin T. Grosvenor Julius-Maximilians Universität Würzburg, Germany SPIGL ’20, Les Houches, France July 30, 2020 Collaborators SciPost Phys. 8 (2020) 073 [arXiv:2001.02683] Johanna Erdmenger Ro Jefferson 1 32 Sources and References 2 32 Outline 1. Introduction to AdS/CFT 2. Fisher metric, Symmetries and Uniqueness 3. Classical metric on States: Instantons 4. Classical metric on Theories: Ising Model 5. Quantum metric on States: Coherent states 6. Connections and Curvature 7. Conclusions and Outlook 3 32 AdS/CFT Correspondence Holography: G. ’t Hooft (THU-93/26, ’93), L. Susskind (JMP 36, ’95) AdS/CFT: J. Maldacena (ATMP 2, ’97) Weak-strong duality. D R d E e d x φ0(x) O(x) = e−SSUGRA CFT φ(0;x)=φ0(x) 4 32 d;2 Embedding into R : −(X0)2 + (X1)2 + ··· + (Xd)2 − (Xd+1)2 = −L2 d(d−1) 1;:::;d Isometries: 2 rotations among X , one rotation between X0 and Xd+1, and 2d boosts mixing X0 and Xd+1 with X1;:::;d. Algebra of isometries is so(d; 2) . Anti-de Sitter Spacetime 2 L2 2 r2 µ ν Poincaré patch: ds = r2 dr + L2 ηµνdx dx . Constant negative curvature, maximally symmetric spacetime. 1 R d+1 p Vacuum of Einstein-Hilbert S = 16πG d x −g(R − 2Λ) with constant negative Λ (cosmological constant). 5 32 Anti-de Sitter Spacetime 2 L2 2 r2 µ ν Poincaré patch: ds = r2 dr + L2 ηµνdx dx . Constant negative curvature, maximally symmetric spacetime. 1 R d+1 p Vacuum of Einstein-Hilbert S = 16πG d x −g(R − 2Λ) with constant negative Λ (cosmological constant). d;2 Embedding into R : −(X0)2 + (X1)2 + ··· + (Xd)2 − (Xd+1)2 = −L2 d(d−1) 1;:::;d Isometries: 2 rotations among X , one rotation between X0 and Xd+1, and 2d boosts mixing X0 and Xd+1 with X1;:::;d. Algebra of isometries is so(d; 2) . 5 32 CFT fields form representations of the conformal algebra. Conformal Field Theory Translations Pµ = i@µ Rotations/boosts Jµν = 2ix[µ@ν] µ Dilatations D = ix @µ 2 ν SCT Kµ = i(x @µ − 2xµx @ν) Conformal algebra is so(d; 2) . In 1 + 1d, extended to infinite Virasoro algebra. 6 32 Conformal Field Theory Translations Pµ = i@µ Rotations/boosts Jµν = 2ix[µ@ν] µ Dilatations D = ix @µ 2 ν SCT Kµ = i(x @µ − 2xµx @ν) Conformal algebra is so(d; 2) . In 1 + 1d, extended to infinite Virasoro algebra. CFT fields form representations of the conformal algebra. 6 32 AdS/CFT Textbook 7 32 Quantum Information Theory in Holography Entanglement probes of the bulk. [0603011 Ryu, Takayanagi; 0705.0016 Hubeny, Rangamani, Takayanagi; 1408.3203 Engelhardt, Wall] Quantum error correction =) bulk reconstruction. [1411.7041 Almheiri, Dong, Harlow] Tensor networks =) bulk-boundary maps. [1601.01694 Hayden et. al.] Holographic distance measures. [pure: 1507.0755 Lashkari, van Raamsdonk; mixed: 1701.02319 Banerjee, Erdmenger, Sarkar] 8 32 Previous Info Geom + Physics work Ruppeiner (’95,’96) - stat phys and thermo (e.g., ideal gas) Brody & Hook (2008) - stat phys and thermo (e.g., vdW gas) Janke et. al. (2002, 2003) - 1d Ising & Spherical models Dolan, Johnston, Kenna (2002) - Potts model Amari (’97) - Neural networks Ke & Nielsen (2016) - machine learning Heckman (2013) - string theory Blau, Narain, Thompson (2001) - YM instantons in 3+1-d 9 32 R Fisher metric: gij(ξ) ≡ dx pξ(x) @i ln pξ(x) @j ln pξ(x) R R q q Fact 1: gij (ξ) = − dx pξ(x) @i@j ln pξ(x) and gij (ξ) = 4 dx @i pξ(x) @j pξ(x) Fact 2: gij is positive semi-definite. Fisher Metric x x x pξ(x) ≥ 0 p R R dx pξ(x) = 1 ξ injective @ ξ −−−−! pξ smooth, @i ≡ @ξi 10 32 R R q q Fact 1: gij (ξ) = − dx pξ(x) @i@j ln pξ(x) and gij (ξ) = 4 dx @i pξ(x) @j pξ(x) Fact 2: gij is positive semi-definite. Fisher Metric x x x pξ(x) ≥ 0 p R R dx pξ(x) = 1 ξ injective @ ξ −−−−! pξ smooth, @i ≡ @ξi R Fisher metric: gij(ξ) ≡ dx pξ(x) @i ln pξ(x) @j ln pξ(x) 10 32 Fisher Metric x x x pξ(x) ≥ 0 p R R dx pξ(x) = 1 ξ injective @ ξ −−−−! pξ smooth, @i ≡ @ξi R Fisher metric: gij(ξ) ≡ dx pξ(x) @i ln pξ(x) @j ln pξ(x) R R q q Fact 1: gij (ξ) = − dx pξ(x) @i@j ln pξ(x) and gij (ξ) = 4 dx @i pξ(x) @j pξ(x) Fact 2: gij is positive semi-definite. 10 32 dµ2 + 2dσ2 ds2 = σ2 2 2 1 σ2 2 dµ +dσ Alternative example: pµ,σ (x) = gives ds = . πσ (x−µ)2+σ2 2σ2 Comments: 1. It is not true that all free theories have flat Fisher metrics. 2. This hyperbolic space is a priori unrelated to AdS/CFT. Gaussian Distribution A simple example (1d Gaussians): Random variable space is X = R. Parameter space is Ξ = upper half-plane = (µ, σ) 2 R × R>0 (x−µ)2 1 − p (x) = p e 2σ2 µ,σ 2π σ 11 32 2 2 1 σ2 2 dµ +dσ Alternative example: pµ,σ (x) = gives ds = . πσ (x−µ)2+σ2 2σ2 Comments: 1. It is not true that all free theories have flat Fisher metrics. 2. This hyperbolic space is a priori unrelated to AdS/CFT. Gaussian Distribution A simple example (1d Gaussians): Random variable space is X = R. Parameter space is Ξ = upper half-plane = (µ, σ) 2 R × R>0 (x−µ)2 1 − p (x) = p e 2σ2 µ,σ 2π σ dµ2 + 2dσ2 ds2 = σ2 11 32 Comments: 1. It is not true that all free theories have flat Fisher metrics. 2. This hyperbolic space is a priori unrelated to AdS/CFT. Gaussian Distribution A simple example (1d Gaussians): Random variable space is X = R. Parameter space is Ξ = upper half-plane = (µ, σ) 2 R × R>0 (x−µ)2 1 − p (x) = p e 2σ2 µ,σ 2π σ dµ2 + 2dσ2 ds2 = σ2 2 2 1 σ2 2 dµ +dσ Alternative example: pµ,σ (x) = gives ds = . πσ (x−µ)2+σ2 2σ2 11 32 Gaussian Distribution A simple example (1d Gaussians): Random variable space is X = R. Parameter space is Ξ = upper half-plane = (µ, σ) 2 R × R>0 (x−µ)2 1 − p (x) = p e 2σ2 µ,σ 2π σ dµ2 + 2dσ2 ds2 = σ2 2 2 1 σ2 2 dµ +dσ Alternative example: pµ,σ (x) = gives ds = . πσ (x−µ)2+σ2 2σ2 Comments: 1. It is not true that all free theories have flat Fisher metrics. 2. This hyperbolic space is a priori unrelated to AdS/CFT. 11 32 gij(ξ) = @i@j (ξ) R Fact: gij (ξ) = h(Fi − hFiiξ)(Fj − hFj iξiξ where hfiξ ≡ dx f(x) pξ(x). Exponential Family Generalization of the Gaussian (Exponential Family): i pξ(x) = exp C(x) + ξ Fi(x) − (ξ) . R i (ξ) = ln dx exp C(x) + ξ Fi(x) is a normalization factor. Assume that fC; Fig are lin. indep. so ξ ! pξ is bijective. 12 32 Exponential Family Generalization of the Gaussian (Exponential Family): i pξ(x) = exp C(x) + ξ Fi(x) − (ξ) . R i (ξ) = ln dx exp C(x) + ξ Fi(x) is a normalization factor. Assume that fC; Fig are lin. indep. so ξ ! pξ is bijective. gij(ξ) = @i@j (ξ) R Fact: gij (ξ) = h(Fi − hFiiξ)(Fj − hFj iξiξ where hfiξ ≡ dx f(x) pξ(x). 12 32 Gaussian example: µ!µ+c −−−−−−−−! −−−−!x!x+c (µ,σ)!λ(µ,σ) −−−−−−−−! −−−−−!x!λx Symmetries ξ ! ξ~(ξ) is a symmetry of p if it can be undone by x ! x~(x) pξ~(x) dx = pξ(~x) dx~ Fact: a symmetry of p is also a symmetry of gij . 13 32 Symmetries ξ ! ξ~(ξ) is a symmetry of p if it can be undone by x ! x~(x) pξ~(x) dx = pξ(~x) dx~ Fact: a symmetry of p is also a symmetry of gij . Gaussian example: µ!µ+c −−−−−−−−! −−−−!x!x+c (µ,σ)!λ(µ,σ) −−−−−−−−! −−−−−!x!λx 13 32 Non-Uniqueness Infinitely many distributions give the same information geometry [Clingman, Murugan and Shock 2015] E.g., 1d Gaussian and Cauchy-Lorentz give 2d hyperbolic space Cauchy-Lorentz is not in the exponential family Weirder example in Clingman, Murugan, Shock (2015) of a 3d distribution that gives 2d hyperbolic space, but has none of its symmetries. 14 32 Lessons Many statistical models S can lead to the same Fisher metric (Gaussian and Cauchy-Lorentz). FM inherits the symmetries of S but can have more 15 32 R 4 µ 2 4 Simpler model: d x @µφ @ φ − g φ (Euclidean signature) 2 σ2 Exact solution to e.o.m.: φ~µ,σ(~x) = gσ j~x−~µj2+σ2 16σ2 j~x−~µj2−σ2 Lagrangian density: L~µ,σ(~x) = g2 (j~x−~µj2+σ2)4 L~µ,σ(~x) < 0 for j~x − ~µj < σ, so not a good prob. distr. 2 2 4 16 σ4 If instead we use −φ @ φ − g φ , we get p~µ,σ(~x) = g2 (j~x−~µj2+σ2)4 and the information geometry is 5d hyperbolic space. Classical metric on States: Instantons Blau, Narain, Thompson (2001) - YM instantons in 3+1-d Uses prescription of Hitchin (1990): probability distribution is taken to be the Lagrangian density evaluated on the state.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    57 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us