Curvaton� a Worked Example of Local-Type Non-Gaussianity

Curvaton� a Worked Example of Local-Type Non-Gaussianity

Critical tests of inflation, MPA, Garching 6th November 2012 Curvaton! a worked example of local-type non-Gaussianity" David Wands Institute of Cosmology and Gravitation, University of Portsmouth Q: what is the curvaton? A: a light weakly-coupled scalar field Polonyi / moduli problem: - supersymmetric theories have many light weakly-coupled scalar fields - after inflation they are expected to be displaced from their true vacuum - they begin oscillating about true minimum when Hubble rate drops below effective mass of the field, H < m - oscillating field has (time-averaged) equation of state, P = 0 - hence density grows relative to radiation / photons - leads to early matter domination, incompatible with standard cosmology ln (ρ) -4/3 ργ ∝ V SOLUTION: -1 ρχ ∝ V decay ln (V) V(χ) curvaton scenario: Linde & Mukhanov 1997; Enqvist & Sloth, Lyth & Wands, Moroi & Takahashi 2001 χ - light field, m<<H, during inflation acquires almost scale-invariant, Gaussian distribution of field fluctuations δχ on large scales 2 2 - quadratic energy density for free field, ρχ=m χ /2 - spectrum of initially isocurvature density perturbations 1 δρ 2 δχ ζ ≈ χ ≈ χ 3 ρ 3 χ χ - transferred to radiation when curvaton decays with some efficiency, 0<r<1, where r ≈ Ωχ,decay 2r δχ ζ = rζ ≈ χ 3 χ non-adiabac field fluctuaons δχ inflaton !δχ δχ 2 $ ζ ~ r# + +...& " χ χ 2 % 18/2/2008 David Wands 4 non-linear curvature perturbation Lyth, Malik & Sasaki (2005), ρ dρ' ζ = δN + but see also Lyth & Wands (2003), ∫ρ 3[ρ'+P(ρ')] Rigopoulos, Shellard & van Tent (2003) Langlois & Vernizzi (2005) where, metric 2 2 2δN i j density ds = a e γijdx dx , ρ = ρ +δρ Hence N = curvature perturbation on uniform-density slices ζ = δ ρ=ρ 1 !ρ $ 3(1+w)ζ = ln# & ⇒ ρ = ρ e 3(1+ w) "ρ %δN=0 = density perturbation on uniform-curvature ( δN=0 ) slices curvaton perturbation Sasaki, Valiviita & Wands (2006) 1 ⎛ ρ ⎞ ζ = ln ⎜ χ ⎟ χ 3 ⎜ ρ ⎟ ⎝ χ ⎠δN =0 2 where curvaton density 1 2 2 3 m ζ χ χ ρχ = χ ⇒ e = 2 χ 2 expand order by order δ χ 3ζ = 2 1 χ1 χ 2 2 δ χ ⎛ δ χ ⎞ 3 2 (χ ) 5 3 9 2 2 1 ⇒ ζ = − ζ ⇔ f = − ζ χ 2 + ζ χ1 = + ⎜ ⎟ 2 1 NL χ ⎝ χ ⎠ 2 4 for purely Gaussian δχ sudden-decay approximation: Hdecay=Γ ζ on uniform-total-density hypersurface before curvaton decay: 4(ζ r −ζ ) 3(ζ χ −ζ ) ρr + ρχ = ρre + ρχ e = constant 4(ζ r −ζ ) 3(ζ χ −ζ ) ⇒ (1− Ωχ )e + Ωχ e =1 Sasaki, Valiviita & Wands (2006) expand order by order (and assuming, for simplicity, ζr=0) (1−Ωχ ) +Ωχ =1 4(1−Ωχ )ζ1 = 3Ωχ (ζ χ1 −ζ1) 2 2 4(1−Ωχ )ζ2 −16(1−Ωχ ) ζ1 = 3Ωχ (ζ χ 2 −ζ2 ) + 9Ωχ (ζ χ1 −ζ1) 4(1−Ωχ )ζ3 +... simplest quadratic curvaton: V=m2χ2/2 • first-order perturbations # & 3Ωχ ζ = r ζ χ where r = % ( ≤1 4 −Ω $% χ '(decay • second-order perturbations " 3 % 5 5 5r 5 ζ = − 2 − r ζ 2 ⇒ f = − − ≥ − 2 #$2r &' 1 NL 4r 3 6 4 • third-order perturbations 2 3 " 9 1 2 % 3 25" r 10r r % 9 ζ3 = $− + +10r + 3r 'ζ1 ⇒ gNL = − $1− − − ' ≤ # r 2 & 6r # 18 9 3 & 2 • Predictions of the simplest quadratic curvaton model: • for r ≈ 1 5 9 f = − , g = NL 4 NL 2 • for r << 1 36 10 f >>1 , τ = f 2 >> g = − f NL NL 25 NL NL 3 NL single source obeys Suyama-Yamaguchi equality Sasaki, Valiviita & Wands (2006) non-linearity parameter see also Malik & Lyth (2006) c.f. exact (numerical) calculation rd 3 order non-linearity for curvaton Sasaki, Valiviita & Wands (astro-ph/0607627) full pdf for ζ from δN Sasaki, Valiviita & Wands (2006) probability distribution for ζ fNL bounds on curvaton parameters Fonseca & Wands (2011) see also Nakayama et al (2010) David Wands 13 fNL + rGW bounds on curvaton parameters Fonseca & Wands (2011) see also Nakayama et al (2010) Stochas(c VEV for curvaton: χ ~ H2 / m 4 => rGW > ( fNL / 518 ) Huang (2008) David Wands 14 Enqvist & Nurmi (2005) self-interacting curvaton Huang (2008) Enqvist et al (2009) n … 1 2 2 4 ! χ $ V (χ) = m χ + m # & 2 " f % assume curvaton is Gaussian at Hubble exit during inflation, but allow for non-linear evolution on large scales before oscillating about quadratic minimum 1 2 χosc = g(χ* ) ⇒ χosc = g + g'δχ + g''(δχ ) +... 2 nG from self-interacting curvaton • second-order perturbations 5 ! g''g $ 5 5r fNL = # +1&− − 4r " g'2 % 3 6 • third-order perturbations 2 9 ! g'''g g''g$ 9 ! g''g $ 1 ! g''g $ 2 gNL = # + 3 &− # +1&− #9 −1&+10r + 3r 4r2 " g'3 g'2 % r " g'2 % 2 " g'2 % • Predictions of the simplest quadratic curvaton model: • for r ≈ 1 5 " g''g % 9 " g'''g2 1 g''g % fNL = $ −1' , gNL = $ − + 2' 4 g'2 4 g'3 3 g'2 # & # & • for r << 1 2 5 ! g''g $ tree 36 2 9 ! g'''g g''g$ fNL = # +1& , τ NL = fNL ~ gNL = # + 3 & 4r " g'2 % 25 4r2 " g'3 g'2 % 2 for gNL >> fNL => loop corrections to τNL violating SY equality… an aside: loop correc(ons to SY equality 2 36 2 ' 81g ! k $* loop(k) f loop 1 NLP ln τ NL = ( NL ) ) + 2 # &, 25 ( 25 fNL " kIR %+ 2 for |gNL| >> fNL loop correc(ons violate SY equality (does not hold on all scales) -> generalised equality: Tasinato, Byrnes, Nurmi & Wands (2012) David Wands 17 Byrnes, Choi & Hall 2009 Khoury & Piazza 2009 scale-dependence of fNL? Sefusa, Liguori, Yadav, Jackson & Pajer 2009 Byrnes, Nurmi, Tasinato & Wands (2009); Byrnes, Gerstenlauer, Nurmi, Tasinato & Wands (2010) Ø power spectrum P (k) Nʹ2 P ζ = [ δϕ ]k=aH ⇒ scale-dependence d ln P d ln Nʹ2 n −1 ≡ ζ = H −1 − 2ε ζ d lnk dt Ø bispectrum 5 Nʹʹ f (k) ⎡ ⎤ NL = ⎢ 2 ⎥ 6 ⎣ Nʹ ⎦k=aH ⇒ scale-dependence d ln f NL Nʹ ⎛ V ʹʹʹ ⎞ n fNL ≡ = ⎜ 2ε (4ε − 3η)+ 2 ⎟ d lnk Nʹʹ ⎝ 3H ⎠ Ø e.g., self-int. curvaton Nʹ ⎛ V ʹʹʹ ⎞ n fNL = ⎜ 2 ⎟ Nʹʹ ⎝ 3H ⎠ scale-dependence probes self-interaction, not probed by power spectrum could be observable for curvaton models where gNL ∼ τNL (Byrnes et al 2011) scale-dependent fNL from curvaton + inflaton Byrnes, Nurmi, Tasinato & Wands (2009) 3 ζ (x) = ζ (x) +ζ (x) + f ζ 2 (x) ϕ χ 5 χχ χ Ø power spectrum Pζ (k) = Pζϕ (k) + Pζχ (k) Pζϕ (k) Pζχ (k) ln k Ø bispectrum Bζ (k) = Bζχ (k) Bζ (k) → f NL (k) ≈ 2 (Pζ (k)) Ø but gNL small ln k Conclusions: • Curvaton provides a simple (natural) model for large primordial non-Gaussianity • Quadratic (non-interacting) curvaton well-described by simplest local fNL • Many variants • self-interactions, inflaton+curvaton, multi-curvaton… offer wider range of observables • nfNL • large gNL • inhomogeneous non-Gaussianity • More precise data allows us to study more detailed models of inflation and origin of cosmological perturbations .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    20 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us