Fundamentals of Linear Algebra

Fundamentals of Linear Algebra

FUNDAMENTALS OF LINEAR ALGEBRA James B. Carrell [email protected] (July, 2005) 2 Contents 1 Introduction 11 2 Linear Equations and Matrices 15 2.1 Linear equations: the beginning of algebra . 15 2.2 Matrices . 18 2.2.1 Matrix Addition and Vectors . 18 2.2.2 Some Examples . 19 2.2.3 Matrix Product . 21 2.3 Reduced Row Echelon Form and Row Operations . 23 2.4 Solving Linear Systems via Gaussian Reduction . 26 2.4.1 Row Operations and Equivalent Systems . 26 2.4.2 The Homogeneous Case . 27 2.4.3 The Non-homogeneous Case . 29 2.4.4 Criteria for Consistency and Uniqueness . 31 2.5 Summary . 36 3 More Matrix Theory 37 3.1 Matrix Multiplication . 37 3.1.1 The Transpose of a Matrix . 39 3.1.2 The Algebraic Laws . 40 3.2 Elementary Matrices and Row Operations . 43 3.2.1 Application to Linear Systems . 46 3.3 Matrix Inverses . 49 3.3.1 A Necessary and Sufficient Condition for Existence . 50 3.3.2 Methods for Finding Inverses . 51 3.3.3 Matrix Groups . 53 3.4 The LP DU Factorization . 59 3.4.1 The Basic Ingredients: L, P, D and U . 59 3.4.2 The Main Result . 61 3 4 3.4.3 Further Uniqueness in LP DU . 65 3.4.4 Further Uniqueness in LP DU . 66 3.4.5 The symmetric LDU decomposition . 67 3.4.6 LP DU and Reduced Row Echelon Form . 68 3.5 Summary . 73 4 Fields and Vector Spaces 75 4.1 What is a Field? . 75 4.1.1 The Definition of a Field . 75 4.1.2 Arbitrary Sums and Products . 79 4.1.3 Examples . 80 4.1.4 An Algebraic Number Field . 81 4.2 The Integers Modulo a Prime p . 84 4.2.1 A Field with Four Elements . 87 4.2.2 The Characteristic of a Field . 88 4.2.3 Connections With Number Theory . 89 4.3 The Field of Complex Numbers . 93 4.3.1 The Construction . 93 4.3.2 The Geometry of C ................... 95 4.4 Vector Spaces . 98 4.4.1 The Notion of a Vector Space . 98 4.4.2 Examples . 100 4.5 Inner Product Spaces . 105 4.5.1 The Real Case . 105 4.5.2 Orthogonality . 106 4.5.3 Hermitian Inner Products . 109 4.6 Subspaces and Spanning Sets . 112 4.6.1 The Definition of a Subspace . 112 4.7 Summary . 117 5 Finite Dimensional Vector Spaces 119 5.1 The Notion of Dimension . 119 5.1.1 Linear Independence . 120 5.1.2 The Definition of a Basis . 122 5.2 Bases and Dimension . 126 5.2.1 The Definition of Dimension . 126 5.2.2 Examples . 127 5.2.3 The Dimension Theorem . 128 5.2.4 An Application . 130 5.2.5 Examples . 130 5 5.3 Some Results on Matrices . 135 5.3.1 A Basis of the Column Space . 135 5.3.2 The Row Space of A and the Ranks of A and AT . 136 5.3.3 The Uniqueness of Row Echelon Form . 138 5.4 Intersections and Sums of Subspaces . 141 5.4.1 Intersections and Sums . 141 5.4.2 The Hausdorff Intersection Formula . 142 5.4.3 Direct Sums of Several Subspaces . 144 5.4.4 External Direct Sums . 146 5.5 Vector Space Quotients . 148 5.5.1 Equivalence Relations and Quotient Spaces . 148 5.5.2 Cosets . 149 5.6 Summary . 154 6 Linear Coding Theory 155 6.1 Linear Codes . 155 6.1.1 The Notion of a Code . 156 6.1.2 Linear Codes Defined by Generating Matrices . 157 6.1.3 The International Standard Book Number . 158 6.2 Error-Correcting Codes . 162 6.2.1 Hamming Distance . 162 6.2.2 The Key Result . 164 6.3 Codes With Large Minimal Distance . 166 6.3.1 Hadamard Codes . 166 6.3.2 A Maximization Problem . 167 6.4 Perfect Linear Codes . 170 6.4.1 A Geometric Problem . 170 6.4.2 How to Test for Perfection . 171 6.4.3 The Existence of Binary Hamming Codes . 172 6.4.4 Perfect Codes and Cosets . 173 6.4.5 The hat problem . 175 6.4.6 The Standard Decoding Table . 176 6.5 Summary . 182 7 Linear Transformations 183 7.1 Definitions and Examples . 183 7.1.1 Mappings . 183 7.1.2 The Definition of a Linear Transformation . 184 7.1.3 Some Examples . 184 7.1.4 General Properties of Linear Transformations . 186 6 7.2 Linear Transformations on Fn and Matrices . 190 7.2.1 Matrix Linear Transformations . 190 7.2.2 Composition and Multiplication . 192 2 7.2.3 An Example: Rotations of R . 193 n 7.3 Geometry of Linear Transformations on R . 196 7.3.1 Transformations of the Plane . 196 7.3.2 Orthogonal Transformations . 197 7.4 The Matrix of a Linear Transformation . 202 B 7.4.1 The Matrix MB0 (T ) . 202 7.4.2 Coordinates With Respect to a Basis . 203 7.4.3 Changing Basis for the Matrix of a Linear Transfor- mation . 208 7.5 Further Results on Linear Transformations . 214 7.5.1 The Kernel and Image of a Linear Transformation . 214 7.5.2 Vector Space Isomorphisms . 216 7.5.3 Complex Linear Transformations . 216 7.6 Summary . 224 8 An Introduction to the Theory of Determinants 227 8.1 The Definition of the Determinant . 227 8.1.1 The 1 × 1 and 2 × 2 Cases . 228 8.1.2 Some Combinatorial Preliminaries . 228 8.1.3 The Definition of the Determinant . 231 8.1.4 Permutations and Permutation Matrices . 232 8.1.5 The Determinant of a Permutation Matrix . 233 8.2 Determinants and Row Operations . 236 8.2.1 The Main Result . 237 8.2.2 Consequences . 240 8.3 Some Further Properties of the Determinant . 244 8.3.1 The Laplace Expansion . 244 8.3.2 The Case of Equal Rows . 246 8.3.3 Cramer’s Rule . 247 8.3.4 The Inverse of a Matrix Over Z . 248 8.3.5 A Characterization of the Determinant . 248 8.3.6 The determinant of a linear transformation . 249 8.4 Geometric Applications of the Determinant . 251 8.4.1 Cross and Vector Products . 251 8.4.2 Determinants and Volumes . 252 8.4.3 Lewis Carroll’s identity . 253 8.5 A Concise Summary of Determinants . 255 7 8.6 Summary . 256 9 Eigentheory 257 9.1 Dynamical Systems . 257 9.1.1 The Fibonacci Sequence . 258 9.1.2 The Eigenvalue Problem . 259 9.1.3 Fibonacci Revisted . 261 9.1.4 An Infinite Dimensional Example . 261 9.2 Eigentheory: the Basic Definitions . 263 9.2.1 Eigenpairs for Linear Transformations and Matrices . 263 9.2.2 The Characteristic Polynomial . 263 9.2.3 Further Remarks on Linear Transformations . 265 9.2.4 Formulas for the Characteristic Polynomial . 266 9.3 Eigenvectors and Diagonalizability . 274 9.3.1 Semi-simple Linear Transformations and Diagonaliz- ability . 274 9.3.2 Eigenspaces . 275 9.4 When is a Matrix Diagonalizable? . 280 9.4.1 A Characterization . 280 9.4.2 Do Non-diagonalizable Matrices Exist? . 282 9.4.3 Tridiagonalization of Complex Matrices . 283 9.4.4 The Cayley-Hamilton Theorem . 285 9.5 The Exponential of a Matrix . 291 9.5.1 Powers of Matrices . 291 9.5.2 The Exponential . 291 9.5.3 Uncoupling systems . 292 9.6 Summary . 296 n n 10 The Inner Product Spaces R and C 297 10.1 The Orthogonal Projection on a Subspace . 297 10.1.1 The Orthogonal Complement of a Subspace . 298 10.1.2 The Subspace Distance Problem . 299 10.1.3 The.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    412 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us