Introduction to Acoustical Oceanography

Introduction to Acoustical Oceanography

Introduction to Acoustical Oceanography Instructors: Mick Peterson and Emmanuel Boss Why are we here? Results from student survey: General: • Introduction to oceanography, terminology, use of acoustics in oceanography. Instrumentation: •SONAR. • Transducer design and modeling. Signal generations and analysis (e.g. using oscilloscopes). • Acoustic instrumentation, how they work, advantages and limitations with respect to whale research (e.g. directional arrays). Sound interaction with matter: • Scattering from suspended material- theory, relationship to biovolume, scattering from nonspherical targets. • How does sound behave as function of the physical properties of water. • Wave propagation and attenuation in sediments and across interfaces. Sound in water in contrast to air. • Hull/machinery radiated sound, and noise produced by turbulent flow and cavitation. Bioacoustics: • How do whales use sound to communicate and sense their environment. • Active and passive bio-acoustics with reference to mammals and zooplankton. Last week, waves: Point source, far enough from the source, in an unbounded, lossless medium: R p()R,t = p (t − R / c )0 0 R p p (t − R / c) R u()R,t = = 0 0 ρwc ρwc R Intensity= energy per unit time per unit area: 2 2 p0 ()t − R / c R0 iR ()R,t = pu = 2 ρwc R Rays Geometric optics- modeling the structure of the acoustic field as a set of path of sonic energy (rays). Principles of the method: •Assumes the wave front >> λ and that changes in sound speed occur on scales >> λ. •Refraction of the propagation direction due to changes in sound speed following Snell’s law. •Specular reflection at interfaces. •Intensity losses along rays are taken into account due to geometric divergence, attenuation along the path, and reflection on the interfaces. •Ignores diffraction effects. Approximate the full wave solutions. Much easier than the full wave solutions. A little discussion of refraction at the interface of two layers (Feynman. Vol I, ch. 26): You x Speedslow/speedfast≡nfast/nslow Fast Your drowning friend Slow x Fermat’s principle: out of all possible paths between two points light (sound) will take the path requiring the shortest travel time (an extreme). Sinθfast /speedfast=sinθslow /speedslow The same principle explain the fact that θreflected=θincident Reflection along a path: Wave: reflection appears as if coming from an image source with θ1=θ2. Ray: reflection appears as if coming from an image source with θ1=θ2. Assumption: ray is reflected locally as if it were a plane wave. Pulse (transient signal) source (as opposed to CW): Delta function, definition: ⎧1 t = 0 ⎪⎧1 Δt Δt ≥ t ≥ 0 δ ()t = ⎨ = ⎨ 0 t ≠ 0 0 otherwise ⎩ ⎩⎪ Δt→0 Delta function, property: ∞ g t δ t − t dt = g t ∫ () (1 ) (1 ) −∞ Transient signal: p0 ()t = 0 t < 0 ∞ p t dt < ∞ t ≥ R c ∫ 0 () 0 Q: Examples of sounds in the ocean that are CW or that are pulses. The energy passing through an area ΔS perpendicular to the sound rays, at distance R and for an interval time tg following the first arrival is given by: R R R +t ++t t c g 2 c gg2 2 c R ΔS []p ()t − R c R ΔΩ 2 ΔE = ΔS pudt = 0 0 dt = 0 p t − R c dt m ∫ ∫∫2 []0 () R ρwc R R ρwc R c c c Where ΔΩ is the spatial angle (=4π over all directions). Remember: Intensity= energy per unit time per unit area: 2 2 p0 (t − R / c) R0 iR ()R,t = pu = 2 ρwc R Reflection along a path (assume homogeneous medium): 1. Source to boundary ⎛ Ra ⎞ R0 p()t = p0 ⎜t − ⎟ ⎝ c ⎠ Ra 2. Source to receiver (tpath=(Ra+Rb)/c) ⎛ Ra + Rb ⎞ R0 p()t = p0 ⎜t − ⎟ R12 ⎝ c ⎠ Ra + Rb 3. Two reflections (tpath=(Ra+Rb+Rc)/c) ⎛ Ra + Rb + Rc ⎞ R0 p()t = p0 ⎜t − ⎟ R12R10 ⎝ c ⎠ Ra + Rb + Rc Multiple paths: Explosive source R1/c R2/c Pressure signal at receiver: Note the reversal due to reflection at top boundary (R10=-1) Ray tubes: Sound travel parallel to sound rays (by construction). Thus, if a lossless medium, energy is conserved within a ray tube. tg tg S p t 2 dt = S p t 2 dt 1 ∫[]1() 2 ∫[]2 () 0 0 where tg is defined such there is no sound for t>tg. Ray propagation in a lossless refractive medium Snell’s law: sinθ sinθ sinθ 0 = 1 = z = a c0 c1 cz I. Ray through piecewise constant sound speed layers. x − x sinθ sinθ ac 1 0 = tanθ = 0 = 0 = 0 z − z 0 cosθ 2 2 1 0 0 1− sinθ0 1− ()ac0 dz z1 − z0 cdt = ds → dt = → t1 − t0 = c cosθ c cosθ0 Note: •When cnsinθn-1/cn-1>1, total reflection occurs (only when passing from slow to fast). •for distances < O(1000m) and θ0~0 refraction can be ignored. Ray propagation in a lossless refractive medium II. Ray through an ocean with slowly changing sound speed (c(z)). Let s denote distance in x-z plane and t time. dz ds dz x ds = and dt = = cosθ c(z) c(z)cosθ dx dz θ ds dx = dz tanθ -z From Snell’s law we can compute the horizontal distance: dx ac()z z ac(z) = → x − x = dz dz 2 0 ∫ 2 1− ()ac()z z0 1− ()ac()z And from above we can compute the time it gets to get there: dz z 1 dt = → t − t = dz c()z cosθ 0 ∫ 2 z0 c()z 1− ()ac ()z Ray propagation in a lossless refractive medium II. Ray through an ocean with slowly changing sound speed (c(z)). dx ac()z z ac(z) = → x − x = dz dz 2 0 ∫ 2 1− ()ac()z z0 1− ()ac()z x dz z 1 dt = → t − t = dz dx 0 ∫ 2 c()z cosθ dz θ z0 c()z 1− ()ac ()z ds Turning point: -z ()ac()z 2 =1→ ac ()z =1 If c≠c(x) the upward ray path is the mirror image of the downward ray’s path. Example of ray paths in the oceans: Arctic Ocean Arctic Ocean (linear sound speed): angles: φ=θ-90° Rays from φ=-2Æ-16 all have turning points 1. Shadow zone get sound through multiple reflections 2. Steeper angles have straighter paths. Example of ray paths in the oceans: North Atlantic Minima in sound speed creates wave guide to well placed sources. Rays can propagate far without reflections from boundaries. 1. Source near surface have very different path. 2. Two convergence zones (Caustics, where acoustic energy is focused for CW source) are present. Transmission losses along a ray (TL): Wave description of sound from a point source in an unbounded ocean: ⎧ ⎛ Ra ⎞ ⎫ R0 p()t = p0 cos⎨2πf ⎜t − ⎟ +φ⎬ exp()−γR ⎩ ⎝ c ⎠ ⎭ Ra γ is the attenuation coefficient due to: •Absorption due to pure water •Absorption due to MgSO4 for f>100kHz (depends on S, z and T) •Absorption due to B(OH)3 for f>1kHz (depends on S, z, T, and pH) •Scattering by marine particles (when abundant enough and with ka~1) If γ can be assumed constant along the ray: ⎛ p ⎞ ⎛ p(R ) 1 ⎞ dB ≡ 20log⎜ ⎟ = 20log⎜ 0 rms exp −γR ⎟ = ⎜ ⎟ ⎜ ()⎟ ⎝ Pref ⎠ ⎝ Pref R ⎠ ⎛ p()R ⎞ 20log⎜ 0 rms ⎟ − 20log R −αR α ≡ 20γ log e ≈ 8.686γ ⎜ ⎟ 10 ⎝ Pref ⎠ Transmission losses along a ray (TL): Transmission loss is then: TL(R / R0 ) = 20log(R / R0 ) +α(R / R0 ) Note: It most often implicitly assumed that R0=1m and thus only R appears in the TL term. If γ varies along the ray: ⎛ p ⎞ ⎛ p()R 1 ⎛ R ⎞⎞ dB ≡ 20log⎜ ⎟ = 20log⎜ 0 rms exp⎜− γdR⎟⎟ = ⎜ ⎟ ⎜ ⎜ ∫ ⎟⎟ Pref Pref R ⎝ ⎠ ⎝ ⎝ R0 ⎠⎠ ⎛ p()R ⎞ R 20log⎜ 0 rms ⎟ − 20log R − 20log γdR ⎜ P ⎟ ∫ ⎝ ref ⎠ R0.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    17 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us