17 08 09.Html.Ppt [Read-Only]

17 08 09.Html.Ppt [Read-Only]

17.8 Acetal Formation Some reactions of aldehydes and ketones progress beyond the nucleophilic addition stage Acetal formation Imine formation Enamine formation Compounds related to imines The Wittig reaction Recall Hydration of Aldehydes and Ketones R • C O• •• R' HOH R •• •• HO C O H •• •• R' Alcohols Under Analogous Reaction with Aldehydes and Ketones R • C O• •• R' R"OH R •• •• R"O C O H Product is called •• •• a hemiacetal. R' Hemiacetal reacts further in acid to yield an acetal R •• •• Product is called R"O C O H •• •• an acetal. R' ROH, H+ R •• •• R"O C O H Product is called •• •• a hemiacetal. R' Example O + CH + 2CH3CH2OH HCl CH(OCH2CH3)2 + H2O Benzaldehyde diethyl acetal (66%) Diols Form Cyclic Acetals O CH3(CH2)5CH + HOCH2CH2OH benzene p-toluenesulfonic acid H2C CH2 O O O + H2O C (81%) H (CH2)5CH3 In general: Position of equilibrium is usually unfavorable for acetal formation from ketones. Important exception: Cyclic acetals can be prepared from ketones. Example O C H CH CCH C6H5CH2CCH3 + HOCH2CH2OH benzene p-toluenesulfonic acid H2C CH2 O O O + H2O (78%) C C6H5CH2 CH3 Mechanism of Acetal Formation First stage is analogous to hydration and leads to hemiacetal acid-catalyzed nucleophilic addition of alcohol to C=O Mechanism H R •• • • • O • C O• H O • • O• + H R Mechanism H R •• + • • • O • C O •O • H H R Mechanism R •• + • O • C O H H Mechanism R •• •• O C O• + H H Mechanism R •• •• O C O• + H H •• O R •• H Mechanism R •• •• O C O• •• H H + O R •• H Mechanism of Acetal Formation Second stage is hemiacetal-to-acetal conversion involves carbocation chemistry Hemiacetal-to-acetal Stage H R •• •• • O C O• H O • •• + H R Hemiacetal-to-acetal Stage H R H •• •• • • O C O + • O • •• H R Hemiacetal-to-acetal Stage R H •• •• O C O + •• H Hemiacetal-to-acetal Stage R H •• •• O C+ •O •• • H Hemiacetal-to-acetal Stage R R •• + O C+ O C •• •• Carbocation is stabilized by delocalization of unshared electron pair of oxygen Hemiacetal-to-acetal Stage R R •• •• O C+ •O •• • H Hemiacetal-to-acetal Stage R R •• •• O C O + •• H Hemiacetal-to-acetal Stage R R •• •• O C O + R •• •• H •O H Hemiacetal-to-acetal Stage R R •• •• O C O R •• •• •• H O + H Hydrolysis of Acetals OR" O + R C R' + H2O C 2R"OH R R' OR" mechanism: reverse of acetal formation; hemiacetal is intermediate application: aldehydes and ketones can be "protected" as acetals. 17.9 Acetals as Protecting Groups Example The conversion shown cannot be carried out directly... O CH3CCH2CH2C CH 1. NaNH2 2. CH3I O CH3CCH2CH2C CCH3 because the carbonyl group and the carbanion are incompatible functional groups. O – CH3CCH2CH2C C: Strategy 1)1) protectprotect C=OC=O 2)2) alkylatealkylate 3)3) restorerestore C=OC=O Example: Protect O + CH3CCH2CH2C CH HOCH2CH2OH benzene p-toluenesulfonic acid H2C CH2 O O C CH2CH2C CH CH3 Example: Alkylate H2C CH2 O O C CH2CH2C CCH3 CH3 H2C CH2 1. NaNH2 O O 2. CH I 3 C CH2CH2C CH CH3 Example: Deprotect H2C CH2 O O H2O C HCl CH2CH2C CCH3 CH3 O + HOCH2CH2OH CH3CCH2CH2C CCH3 (96%).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    34 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us