MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science 2008 PREPRINT 343 Conference A Cultural History of Heredity IV: Heredity in the Century of the Gene Table of Contents Introduction Staffan Müller-Wille, Hans-Jörg Rheinberger and John Dupré 3 Leaving Inheritance behind: Wilhelm Johannsen and the Politics of Mendelism Staffan Müller-Wille 7 Mendelian Factors and Human Disease: A Conversation Jean Paul Gaudillière & Ilana Löwy 19 Heredity without Mendelism: Theory and Practice of Dairy Cattle Breeding in the Netherlands 1900-1950 Bert Theunissen 27 Innovation and Ownership in Living Products: Animals and Fruits in the United States, the 1870s to 1930 Daniel J. Kevles 51 Coalition and Opposition: Heredity, Culture, and the Boundaries of Anthropology in the Work of Alfred L. Kroeber Maria E. Kronfeldner 61 Comments on Daniel Kevles and Maria Kronfeldner’s Papers Edna Suárez 77 Producing Identity, Industrializing Purity: Elements for a Cultural History of Genetics Christophe Bonneuil 81 Mendelism and Agriculture in the First Decades of the XXth Century in Mexico Ana Barahona 111 Herbert Spencer Jennings, Heredity, and Protozoa as Model Organisms, 1908-1918 Judy Johns Schloegel 129 Clones, Pure Lines, and Heredity: The Work of Victor Jollos Christina Brandt 139 Pedigree vs. Mendelism. Concepts of Heredity in Psychiatry before and after 1900 Bernd Gausemeier 149 Pedigree Charts as Tools to Visualize Inherited Disease in Progressive Era America Philip Wilson 163 Biohistorical Narratives of Jewish history. Contextualizing the Studies of Wil- helm Nussbaum (1896-1985) Veronika Lipphardt 191 William Bateson’s Pre- and Post-Mendelian Research Program in ‘Heredity and Development’ Marsha L. Richmond 213 Genetics Without Genes: Blakeslee, Datura, and “Chromosomal Mutations” Luis Campos 243 Seeing, Breeding and the Organisation of Variation: Erwin Baur and the Culture of Mutations in the 1920s Alexander von Schwerin 259 Heredity and the Century of the Gene Raphael Falk 279 Introduction This volume contains contributions to a workshop that was the fourth in a series of workshops dedicated to the objects, the cultural practices and the institutions in which the knowledge of heredity became materially entrenched and in which it unfolded its effects in various epochs and social arenas.1 It was organized collaboratively by the Max Planck Institute for the History of Science, Berlin, and the ESRC Research Centre for Genomics in Society, Exeter. Funds from the Academic Research Collaboration programme of the British Council and the German Academic Exchange Service allowed to prepare the workshop in two one-day-meetings of scholars from Berlin and Exeter. The workshop itself was funded by the British Academy and by the Government of the Principality of Liechtenstein. The last workshop in the series had dealt with the period up until the very end of the nineteenth century when heredity had become a central problem for biologists and a wide variety of approaches to attack that problem had begun to flourish.2 The fourth workshop was specifically designed to address a historiographic problem that had arisen within the wider context of our project ‘A Cultural History of Heredity’. Up to the late nineteenth century, the knowledge of heredity took shape by a step-by-step aggregation and integration of discourses from various knowledge domains; while from 1900 onwards it began to condense into and to be shaped by a highly-specialized discipline, the discipline of genetics. This has resulted in a preoccupation of the historical literature with genetics. One of the basic assumptions of our project, however, has been that heredity was always and remained to be more than genetics as a discipline, and that wider notions of inheritance persisted in areas like practical breeding, medical counselling and therapy, eugenics, and anthropology (including cultural anthropology). To widen the scope of inquiry, we therefore decided to focus the workshop on the tools of dealing with inheritance, that is genealogical records and model organisms, and to follow their provenances, metamorphoses, and trajectories.3 The major results, as documented in this volume, can be summarized as follows. 1. During the era of classical genetics (1900-1940) a number of important concepts with respect to heredity were defined, or re-defined, in strictly genealogical terms. These concepts included: clones, pure lines, bloodlines (in animal breeding), family lines (in anthropology), generation, and mutations as instances of change in these lines. The operational definition of these terms allowed researchers like William Bateson, Wilhelm Johannsen, Erwin Baur, Victor Jollos, Herbert Spencer Jennings, and Albert F. Blakeslee to create what some of them referred to as ‘synthetic species’: breeding systems fine-tuned by systematic in- and out-breeding to instantiate particular cases of evolution, as Bateson once put it. The significance of these constructs for the cultural history of heredity is twofold. First, they all had a life prior to and outside biological laboratories or experimental gardens. Pure lines, for example, had been developed by plant breeders, especially 1 For more information on the project see http://www.mpiwg-berlin.mpg.de/en/research/projects/ DeptIII_Cultural_History_Heredity/index_html. 2 See Conference: A Cultural History of Heredity III: 19th and Early 20th Centuries, Berlin: Max Planck Institute for the History of Science (Preprint, vol. 294). 3 See original call for papers at http://www.mpiwg-berlin.mpg.de/workshops/en/HEREDITY/ announcement4.html, 2008/01/07 3 Introduction the French seed company Vilmorin, in the late nineteenth century already. And genealogical concepts used in the analysis of human populations had an even longer prehistory in clinical records. Second, the construction of ‘synthetic species’ was largely independent of any specific theoretical assumptions about mechanisms of transmission. Clones of single-celled organisms like Paramecium, for example, could be regarded as ‘naked germ-lines’, thus opening the possibility to study germinal transmission in its own right, without any prior commitment to particular theoretical assumptions about the relationship of soma and germ-plasm. And mutation researchers like Blakeslee or Baur could rely on their systems producing novelties without having to make prior decisions about the nature of mutations. It was in this sense that Jennings insisted against Johannsen that genotypes had to be considered as ‘things’, rather than hypothetical entities. 2. Much research into heredity in the late nineteenth and early twentieth century took place in applied contexts like seed production, breeding yeast and cereals for large-scale beer production, mass-production of vaccines, efforts to further public health, or administration of psychiatric hospitals. Increasing levels of division of labour and bureaucratic control in these areas – the seed company Vilmorin in France had 400 employees around 1900 – led to the establishment of a culture of expertise and scientificity. In these contexts, however, Mendelism featured as only one among many methodologies to realize values that were endorsed by this culture, like analyticity, exactitude, calculability and predictability. Breeders and eugenicists in particular, whether they declared themselves Mendelists or not, shared a combinatorial approach that held a promise for the transparent and reliable production of intergenerational effects. Synthetic chemistry, not physics, provided the model science in this context. 3. An important property of this culture of expertise was its obsession with purity. Purity connects a number of issues that were at stake. It was an instrument of control, as results could be ‘checked’ against the corresponding inputs. It enabled practitioners to ‘fix’ characters and create identifiable and specifiable products. It created a set of discrete and stable life forms, rather than an uncontrolled continuum of variations. And it held a promise to divorce practices from the vagaries of history. Once entities could be held ‘pure’, they could be recombined without being subject to the unpredictable manifold of interactions that ‘impure’ entities like the so-called ‘land races’ in traditional agriculture elicited. Heritability rather than inheritance, prospect rather than retrospect thus became one of the chief criteria for assessing the quality of life forms. In order to advertise, trade-mark, or patent agricultural or microbiological innovations, production methods had to be made transparent and reliable reproduction guaranteed. Heredity was commodified to become heritability, a marketable quality. 4. Mendelism entailed conditions and costs that precluded many areas from adopting it. To do Mendelian experiments, organisms had to be first inbred, then cross-bred, and finally raised in large numbers, to be able to ascertain Mendelian ratios. Asexual organisms and humans, but also many agriculturally significant animals, like cows, could not be subjected to such a practice. This is one of the main reasons why animal breeding and clinical medicine became ‘geneticized’ only well after WWII, and why statistical approaches, developed by the so-called biometrical school 4 Introduction long before the advent of Mendelism already, persisted in these areas to finally merge with population and quantitative genetics. It was with respect to human populations, in psychiatry, medicine and anthropology, in particular that sophisticated
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages289 Page
-
File Size-