Morphological Properties Determination of Main Belt Asteroids

Morphological Properties Determination of Main Belt Asteroids

MORPHOLOGICAL PROPERTIES DETERMINATION OF MAIN BELT ASTEROIDS by Guillermo Cerdán Hernandez Thesis submitted as a partial requirement to obtain the degree of MASTER OF SCIENCE IN SPACE SCIENCE AND TECHNOLOGY at Instituto Nacional de Astrofísica, Óptica y Electrónica April 2019 Tonantzintla, Puebla Supervised by: Dr. José Ramón Valdés Parra Dr. José Silviano Guichard Romero c INAOE 2019 The author hereby grants to INAOE permission to reproduce and distribute copies of this thesis document in whole or in part. Abstract We used lightcurves from the Asteroid Lightcurve Photometry Database (ALCDEF), observations made at Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE, México) Schmidt telescope, and Minor Planet Observer Lightcurve Inversion software (MPO LC Invert) to make the lightcurve inversion process, deriving shape, and pole orientation for the asteroids: (22) Kallipe, (287) Nepthys, (711) Marmulla, (1117) Reginita, (1318) Nerina, (1346) Gotha, (1492) Oppozler, (3028) Zhangguoxi, (3800) Karayusuf, (4713) Steel, and (5692) Shirao. Fueron usadas curvas de luz de la base de datos de la Asteroid Photometry Database (ALCDEF), observaciones hechas en el telescopio Schmidt del Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE, México) y el software del Minor Planet Observer Lightcurve Inversion (MPO LC Invert, para aplicar el proceso de inversión de cruvas de luz, obteniendo la forma y la orientación del polo para los asteroides: (22) Kallipe, (287) Nepthys, (711) Marmulla, (1117) Reginita, (1318) Nerina, (1346) Gotha, (1492) Oppozler, (3028) Zhangguoxi, (3800) Karayusuf, (4713) Steel y (5692) Shirao. Acknowledgments I thank CONACYT for granting the financial, intellectual capital, and infrastructure support to carry out this thesis work. Likewise, I thank all the people who have contributed in my life and who have allowed me to live this experience, people like: Dolores Hernandez Gonzalez, Juan Carlos Herrera Tavera, Jose Ramón Valdes Parra, Karem Contreras Aguilera, trench companions, and the teachers with vocations who have instructed me. Also, I want to thank the people who have hindered my life, without them I could not have reached this moment, people like my fifth grade teacher Cristino, Francisco Narro, Dulce Cruz, the Refrescos King administrators, and many others, without the rocks that they threw at me I could not have built my temple to virtue and science. V Contents Contents VII 1. INTRODUCTION AND BACKGROUND 1 1.1. INTRODUCTION ............................ 1 1.2. SPACE ENVIRONMENT DELIMITATION AND DEFINITION . 3 1.3. ASTEROIDS MORPHOLOGY AND DEFINITION .......... 3 1.3.1. DEFINITION ........................... 3 1.3.2. RUBBLE PILE OR MONOLITHS ............... 5 1.3.3. BINARIES OR MICRO-SYSTEM ASTEROIDS . 5 1.3.4. SPECTRA ............................ 6 1.3.5. ASTEROIDS NOMENCLATURE ................ 6 1.3.6. CURRENT PROVISIONAL DESIGNATION FOR ASTEROIDS 7 1.3.7. ORBITAL ELEMENTS ..................... 9 1.3.8. ORBIT PERTURBATIONS ................... 9 1.4. MAIN BELT ASTEROIDS ........................ 13 1.4.1. MAIN BELT FORMATION AND DISTRIBUTION OF ASTEROIDS ........................... 14 1.5. OTHER MORPHOLOGY PARAMETERS AND CHARACTERISTICS 17 1.5.1. (H) ASTEROID ABSOLUTE MAGNITUDE . 17 1.5.2. SLOPE PARAMETER (G) .................... 18 1.5.3. H-G ................................ 18 1.5.4. ASTROMETRY AND PHOTOMETRY . 19 1.5.5. H-G PARAMETER AND H-G1G2 . 21 1.6. DETERMINATION OF ASTEROID CHARACTERISTICS FROM LIGHTCURVES ............................. 23 2. Problem Statement 25 2.1. BRIEF IMPLICIT PHILOSOPHICAL JUSTIFICATION . 25 2.2. WHY DETERMIN ASTEROIDS PROPERTIES? . 26 2.3. DISCOVERIES MADE BY STATISTICAL ANALYSIS . 27 2.3.1. RUBBLE PILE SPIN BARRIER . 27 2.4. EARTH DEFENCE ............................ 28 2.5. ASTEROID MINING ........................... 29 VII 2.5.1. GROUND-BASED VISUAL OBSERVATIONS AND ANALYSIS ............................ 30 2.6. FUTURE SPACIAL PROBES TO ASTEROIDS . 30 3. METHODOLOGY 33 3.1. FINDING MORPHOLOGICAL PARAMETERS . 33 3.2. TONANTZINTLA SCHMIDT TELESCOPE . 34 3.3. ELECTRONIC DETECTOR ....................... 38 3.4. SCHMIDT TELESCOPE AND CCD CHARACTERISTICS . 39 3.5. ASTRONOMICAL OBSERVATIONS . 41 3.5.1. PLANING AND SELECTING OBJECTS . 41 3.5.2. CCD SETTINGS ......................... 43 3.5.3. IMAGE REDUCTION BY IRAF . 44 3.6. MPO CANOPUS ............................. 46 3.6.1. CONFIGURATION SETTINGS . 46 3.6.2. APERTURES ........................... 46 3.6.3. ASTROMETRY ......................... 46 3.6.4. MPO CANOPUS PHOTOMETRY SESSION . 46 3.6.5. VERIFYING COMPARISON STARS . 50 3.6.6. MERGE SESSIONS ....................... 50 3.6.7. PERIOD SPECTRUM ANALYZIS . 51 3.6.8. CSmin/CSmax .......................... 54 3.7. LIGHTCURVE INVERSION ....................... 54 3.7.1. MINKOWSKI REDUCTION . 61 3.8. LIGHT CURVE INVERSION WITH LC INVERT . 61 3.8.1. DATA SELECTION ....................... 62 3.8.2. IMPORTING LIGHTCURVE FORMATS . 62 3.8.3. SYNODIC PERIOD FINDING . 63 3.8.4. SEARCHING POLE ORIENTATION . 64 3.8.5. MINKOWSKI MODELING ................... 65 4. OBSERVATIONS 67 4.1. LIGHTCURVES REPORT ........................ 67 4.2. OBSERVATIONS REPORT ....................... 67 4.2.1. DATABASES REPORT ..................... 71 4.3. OBSERVATIONS AND DATABASE GRAPHIC REPORTS . 75 4.3.1. SCHMIDT TELESCOPE OBSERVATIONS LIGHTCURVES . 75 5. RESULTS 95 5.1. (22) KALLIOPE ............................. 98 5.1.1. DAMIT LIGHTCURVES OF (22) KALLIOPE . 98 5.1.2. PERIODS REPORTED FOR (22) KALLIOPE . 100 VIII 5.1.3. DAMIT SHAPE RECREATION FOR (22)KALLIOPE USING DAMIT PARAMETERS . 100 5.1.4. DAMIT SHAPE RECREATION FOR (22) KALLIOPE FOLLOWING THE PROCESS OF SEARCH PERIOD AND POLES WITH LC INVERT . 101 5.1.5. LIGHT CURVE INVERSION FOR (22)KALLIOPE USING ALCDEF AND INAOE OBSERVATIONS . 105 5.2. (287) NEPTHYS .............................112 5.2.1. DAMIT LIGHTCURVES OF (287) NEPTHYS . 112 5.2.2. PERIODS REPORTED FOR (287) NEPTHYS . 114 5.2.3. DAMIT SHAPE RECREATION FOR (287) NEPHTYS USING DAMIT PARAMETERS . 114 5.2.4. SHAPE FOR (287) NEPHTYS USING DAMIT AND INAOE LIGHTCURVES . 116 5.3. (711) MARMULLA . 122 5.3.1. LIGHTCURVES OF (711) MARMULLA . 122 5.3.2. PERIOD SEARCH INTERVAL . 122 5.3.3. SEARCHING PERIOD FOR (711) MARMULLA USING ALCDEF AND INAOE LIGHTCURVES. 122 5.3.4. SEARCH POLES AND MODEL FOR (711) MARMULLA . 124 5.3.5. GENERATING 3D SHAPE FOR (711) MARMULLA . 126 5.4. (1117) REGINITA ............................127 5.4.1. LIGHTCURVES OF (1117) REGINITA . 127 5.4.2. PERIOD SEARCH INTERVAL . 127 5.4.3. SEARCHING PERIOD FOR (1117) REGINITA USING ALCDEF AND INAOE LIGHTCURVES. 127 5.4.4. SEARCH POLES AND MODEL FOR (1117) REGINITA . 129 5.4.5. GENERATING 3D SHAPE FOR (1117) REGINITA . 131 5.5. (1318) NERINA ..............................132 5.5.1. LIGHTCURVES OF (1318) NERINA . 132 5.5.2. PERIOD SEARCH INTERVAL . 132 5.5.3. SEARCHING PERIOD FOR (1318) NERINA USING ALCDEF AND INAOE LIGHTCURVES. 132 5.5.4. SEARCH POLES AND MODEL FOR (1318) NERINA . 134 5.5.5. GENERATING 3D SHAPE FOR (1318) NERINA . 136 5.6. (1346) GOTHA ..............................137 5.6.1. LIGHTCURVES OF (1346) GOTHA . 137 5.6.2. PERIOD SEARCH INTERVAL . 137 5.6.3. SEARCHING PERIOD FOR (1346) GOTHA USING ALCDEF AND INAOE LIGHTCURVES. 137 5.6.4. SEARCH POLES AND MODEL FOR (1346) GOTHA . 139 5.6.5. GENERATING 3D SHAPE FOR (1346) GOTHA . 141 5.7. (1492) OPPOLZER ............................142 IX 5.7.1. LIGHTCURVES OF (1492) OPPOLZER . 142 5.7.2. PERIOD SEARCH INTERVAL . 142 5.7.3. SEARCHING PERIOD FOR (1492) OPPOLZER USING ALCDEF AND INAOE LIGHTCURVES. 142 5.7.4. SEARCH POLES AND MODEL FOR (1492) OPPOLZER . 144 5.7.5. GENERATING 3D SHAPE FOR (1492) OPPOLZER . 146 5.8. (3028) ZHANGGUOXI . 147 5.8.1. LIGHTCURVES OF (3028) ZHANGGUOXI . 147 5.8.2. PERIOD SEARCH INTERVAL . 147 5.8.3. SEARCHING PERIOD FOR (3028) ZHANGGUOXI USING ALCDEF AND INAOE LIGHTCURVES. 147 5.8.4. SEARCH POLES AND MODEL FOR (3028) ZHANGGUOXI 149 5.8.5. GENERATING 3D SHAPE FOR (3028) ZHANGGUOXI . 151 5.9. (3800) KARAYUSUF . 152 5.9.1. LIGHTCURVES OF (3800) KARAYUSUF . 152 5.9.2. PERIOD SEARCH INTERVAL . 152 5.9.3. SEARCHING PERIOD FOR (3800) KARAYUSUF USING ALCDEF AND INAOE LIGHTCURVES. 152 5.9.4. SEARCH POLES AND MODEL FOR (3800) KARAYUSUF . 154 5.9.5. GENERATING 3D SHAPE FOR (3800) KARAYUSUF . 156 5.10. (4713) Steel ................................157 5.10.1. LIGHTCURVES OF (4713) STEEL . 157 5.10.2. PERIOD SEARCH INTERVAL . 157 5.10.3. SEARCHING PERIOD FOR (4713) STEEL USING ALCDEF AND INAOE LIGHTCURVES. 157 5.10.4. SEARCH POLES AND MODEL FOR (4713) STEEL . 159 5.10.5. GENERATING 3D SHAPE FOR (4713) STEEL . 161 5.11. (5692) SHIRAO ..............................162 5.11.1. LIGHTCURVES OF (5692) SHIRAO . 162 5.11.2. PERIOD SEARCH INTERVAL . 162 5.11.3. SEARCHING PERIOD FOR (5692) SHIRAO USING ALCDEF AND INAOE LIGHTCURVES. 162 5.11.4. SEARCH POLES AND MODEL FOR (5692) SHIRAO . 164 5.11.5. GENERATING 3D SHAPE FOR (5692) SHIRAO . 166 6. CONCLUSIONS AND FUTURE WORK. 167 6.1. GENERAL CONCLUSIONS . 167 6.2. RESULTS CONCLUSIONS . 167 6.2.1. ASTEROIDS WITH PARAMETERS DETERMINED BY DAMIT DATABASE. 168 6.3. ASTEROIDS WITH OUT ENTRIES IN DAMIT. 171 6.4. ASTEROIDS WITH NOT ENOUGH COVERAGE OF α or PABL . 171 6.5. FUTURE WORK .............................172 X 6.5.1. RECOMMENDATIONS TO MAKE THE FUTURE OBSERVATIONS . 172 List of Figures 173 List of Tables 181 XI Chapter 1 INTRODUCTION AND BACKGROUND Measure what is measurable, and make measurable what is not so. Galileo Galilei 1.1. INTRODUCTION Scientists and philosophers have been trying to measure, sort out classes, establish ratios and to find reasons why the objects in the physical world are the way they are. To achieve this it is necessary to use instruments but even more, mathematical models that are more sensitive and precise. In 1609, Galileo constructed and pointed skyward his telescope with a power to magnify 20 times. Since that day, the humankind was able to make out mountains and craters on the moon, rings around Saturn, sunspots and moons of Jupiter. The history of the study of asteroids (or minor planets) began with the discovery of Ceres. Located in the main belt, it was observed for the first time in January 1st, 1801 by Guisseppe Piazzi.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    203 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us