Birth of Complex Numbers in Solving Cubic Equations

Birth of Complex Numbers in Solving Cubic Equations

CardanBombeliEvaluated.nb 1 Math 421 è Fall 2006 Birth of complex numbers in solving cubic equations Revised 9/6/06 Copyright © 2006 by Murray Eisenberg. All rights reserved. The problem To solve the cubic equation x3 + Ax2 + Bx + K = 0. Strategy: è change-of-variable Ø new cubic with no quadratic term; è solve new cubic; è use the solutions of that to solve the original. Reduction of cubic to depressed cubic (Anonymous, end of 14th century) Temporarily replace x by u and rename the constant term K: In[1]:= cubic = u3 + Au2 + Bu + K Out[1]= K + Bu+ Au2 + u3 Make linear substitution 1 u = x - ÅÅÅÅ3 A 1 In[2]:= depressed = cubic .u→ x − A 3 A A 2 A 3 Out[2]= K + B − + x + A − + x + − + x 3 ê3 3 Collect coefficients of the powers of x: I M I M I M CardanBombeliEvaluated.nb 2 In[3]:= Collect depressed, x 2A3 AB A2 Out[3]= − + K + − + B x + x3 27 3 3 @ D That is the depressed cubic: no x2 term, so of form J N x3 + bx + c where A3 2 A3 AB b =-ÅÅÅÅÅÅÅ3 + B, c = ÅÅÅÅÅÅÅÅÅÅÅ27 - ÅÅÅÅÅÅÅÅÅ3 + K. In[4]:= depressedCubic = x3 + bx + c Out[4]= c + bx+ x3 1 Exercise. The linear substitution just used was u = x - ÅÅÅÅ3 A. Among all possible linear substitutions u = x - cst, 1 why use cst = ÅÅÅÅ3 A? del Ferro & Tartaglia solution of depressed cubic (Scipione del Ferro, 1515, and Niccolò Fontana aka "Tartaglia") Scipione del Ferro and Niccolò Tartaglia discovered formula for a root of a depressed cubic x3 + bx + c. In Mathematica: c c2 b3 c c2 b3 In[5]:= delFerroTartagliaRoot b_, c_ := 3 − + + + 3 − − + 2 4 27 2 4 27 In[6]:= delFerroTartagliaRoot@b, c D &''''''''''''''''''''''''''''''''$%%%%%%%%%%%%%%%%''''''''%%%%%%%''''' &''''''''''''''''''''''''''''''''$%%%%%%%%%%%%%%%%''''''''%%%%%%%''''' 1 3 1 3 c b3 c2 c b3 c2 Out[6]= − − + + − + + 2 27 4 @ 2 D 27 4 ê ê i y i y j z j z j $%%%%%%%%%%%%%%%%%%%%% z j $%%%%%%%%%%%%%%%%%%%%% z The del Ferro-Tartagliaj solutionz will appearj simpler if in thez depressed cubic you take b = 3 p and c = 2 q to obtain the form: k { k { x3 + 3 px + 2 q In[7]:= delFerroTartagliaRoot b, c . b −> 3 p, c → 2 q 1 3 1 3 Out[7]= −q − p3 + q2 + −q + p3 + q2 @ Dê 8 < ê ê Nicer formula from…è!!!!!!!!!!!!!!! è!!!!!!!!!!!!!!! I M I M CardanBombeliEvaluated.nb 3 In[8]:= niceDepressedCubic = depressedCubic . b → 3 p, c → 2 q Out[8]= 2q+ 3px+ x3 ê 8 < …by new Mathematica function: In[9]:= niceDelFerroTartagliaRoot p_, q_ := delFerroTartagliaRoot b, c . b −> 3 p, c → 2 q So del Ferro-Tartaglia formula for root of a depressed cubic of form x3 + 3 px + 2 q is: @ D @ Dê 8 < In[10]:= niceDelFerroTartagliaRoot p, q 1 3 1 3 Out[10]= −q − p3 + q2 + −q + p3 + q2 @ D ê ê è!!!!!!!!!!!!!!! è!!!!!!!!!!!!!!! I M I M Cardan's general solution of the cubic (Girolamo Cardano, Ars magna, 1545) Cardan uses the linear substitution that reduces a general cubic to a depressed cubic along with the del Ferro-Tartaglia formula for one solution of the depressed cubic to obtain a general formula for solving any cubic. Mathematica can do it, too: In[11]:= Solve x3 + Ax2 + Bx + K 0, x TraditionalForm Out[11]//TraditionalForm= A 1 x Ø-ÅÅÅÅÅÅ@+ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ -2 A3 + 9 BA- 27 K + 3Dêê3 4 KA3 - B2 A2 - 18 BKA+ 4 B3 + 27 K2 ^ 1 3 - 3 3 3 2 3 2 3 B - A2 3 -2 A3 + 9 BA- 27 K + 3 3 4 KA3 - B2 A2 - 18 BKA+ 4 B3 + 27 K2 ^ 1 3 , è!!!! è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!! !!!!!!!! !!!!! 99 A è!!!!1 II M H ê LM x Ø-ÅÅÅÅÅÅ - ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ 1 - 3 -2 A3 + 9 BA- 27 K + 3 3 4 KA3 - B2 A2 - 18 BKA+ 4 B3 + 27 K2 ^ 1 3 + è!!!!3 6 3 2 è!!!! è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! I H LM ë I I M H ê LM= 1 + 3 3 B - A2 322 3 -2 A3 + 9 BA- 27 K + 3 3 4 KA3 - B2 A2 - 18 BKA+ 4 B3 + 27 K2 ^ 1 3 , è!!!! è!!!! è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 9 II MI M H ê LM A è!!!!1 3 x Ø-ÅÅÅÅÅÅ - ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ 1 + 3 -2ê A + 9 BA- 27 K + 3 3 4 KA3 - B2 A2 - 18 BKA+ 4 B3 + 27 K2 ^ 1 3 + 3 è!!!!6 3 2 è!!!! è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! II MH LM ë I I M H ê LM= 1 - 3 3 B - A2 322 3 -2 A3 + 9 BA- 27 K + 3 3 4 KA3 - B2 A2 - 18 BKA+ 4 B3 + 27 K2 ^ 1 3 è!!!! è!!!! è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!! !!!!!!!!!!!!! 9 è!!!! II MI M H ê LM ê è!!!! è!!!! è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!! !!!!!!!! !!!!! II MH LM ë I I M H ê LM== CardanBombeliEvaluated.nb 4 Bombeli: use square-roots of negative numbers to obtain real roots of cubics (Rafael Bombeli, L'algebra, 1572) ü Paradox è A depressed cubic always has a real solution: x3 + 3 px + 2 q = 0 is equivalent to x3 =-3 px - 2 q, and the cube function y = x3 always intersects the line y =-3 px - 2 q in at least one point, no matter what p and q are! In[12]:= Plot x3, x, −5, 5 , PlotStyle → Red ; @ 8 < 2 D 1 -4 -2 2 4 -1 -2 1 3 1 3 è Yet del Ferro-Tartaglia formula -q - p3 + q2 + -q + p3 + q2 involves square-roots of negative numbers when q2 ê<-p3. ê è!!!!!!!!!!!!!!! è!!!!!!!!!!!!!!! I M I M ü Example In the depressed cubic equation x3 + 3 px + 2 q, take p = 5 and q =-2: x3 - 15 x - 4 = 0 CardanBombeliEvaluated.nb 5 In[13]:= eqn = x3 − 15 x − 4 0 Out[13]= −4 − 15 x + x3 0 There must be a solution—the cubic y = x3 and the line y = 15 x + 4 must intersect: In[14]:= Plot x3,15 x + 4 , x, −7, 7 , PlotStyle → Red, Blue ; 75 @8 < 8 < 8 <D 50 25 -6 -4 -2 2 4 6 -25 -50 -75 In fact, x = 4 is a solution: In[15]:= eqn .x→ 4 Out[15]= True ê ü Bombeli's "wild thought" In[16]:= niceDelFerroTartagliaRoot p, q 1 3 1 3 Out[16]= −q − p3 + q2 + −q + p3 + q2 @ D ê ê The depressed cubicè!!!!!!! has!!!!!!!! p =-5, q =-è!!!!!!!2. So…!!!!!!!! I M I M In[17]:= p3 + q2 . p →−5, q →−2 Out[17]= −121 ê 8 < … then del Ferro-Tartaglia solution in this example is: 3 3 3 3 2 + -121 + 2 - -121 = 2 + 11 -1 + 2 - 11 -1 The known solution x = 4 could be recovered from the del Ferro-Tartaglia if the two terms on the right have the forms "###############è!!!!!!!#### ####!!!!!### "###############è!!!!!!!#### ####!!!!!### "###############è######## !!!!!!!#### "###############è######## !!!!!!!#### 3 3 2 + 11 -1 = m + n -1, 2 - 11 -1 = m - n -1. (*) for suitable"############### m and n.è####### # !!!!!!!#### è!!!!!!! "###############è######## !!!!!!!#### è!!!!!!! How? Well, the sum of these two solutions has the form… CardanBombeliEvaluated.nb 6 In[18]:= m + n −1 + m − n −1 Out[18]= 2m è!!!!!!! è!!!!!!! I M I M …so here we must have: 2 m = 4 (the known solution). Thus to obtain the solution x = 4, Bombeli wants to find n for which (*) holds with m = 2, in other words, 3 3 2 + n -1 = 2 + 11 -1, 2 - n -1 = 2 - 11 -1 Pretend usual rules of algebra hold for expressions involving è!!!!!!! è!!!!!!! è!!!!!!! è!!!!!!! I M I M Â= -1, and assume the special rule è!!!!!!! 2 Â2 = -1 =-1. 3 Then multiply out to calcluate 2 + n -1 : è!!!!!!! I M 3 In[19]:= theCube Expand 2 n 1 = +è!!!!!!! − I M Out[19]= 8 + 12 n − 6n2 −n3 è!!!!!!! AI M E To compare result with 2 + 11 -1 , separate the "real part" from the part involving Â: In[20]:= ComplexExpand theCube è!!!!!!! Out[20]= 8 − 6n2 + 12 n − n3 @ D That is supposed to equal 2 + 11 -1: H L In[21]:= Solve 8 − 6 n2,12 n − n3 2, 11 ,n è!!!!!!! Out[21]= n → 1 @8 < 8 < D Exercise.88 The "usual<< rules of algebra" include such identities as: x + y + u + v = x + u + y + v , x + y u + v = xu + yv + xv + yu, k x + y = kx + ky, kH xyL = Hkx y L= x Hky, L H L Hx + yLH+ z =L x + y + z . These identitiesH Lhold for real numbers x, y, u, v, k, z. Assume suchH LidentitiesH L hold forH "complexL numbers" as well—for numbers of the form a + b  where a and b are real. And stillH assumeL that Â2 =ÂÂ=-H 1.L Then put each of the following into the form y=u +Âv with u and v real: a + b  + c + d  , a + b  c + d  H L H L H LH L CardanBombeliEvaluated.nb 7 ü The moral Square-roots of negative numbers are useful (essential?) in obtaining real roots of certain cubic equations. (But what are such "complex" numbers? That's what's next in this course!) Appendices ü Appendix 1: Obtaining real imaginary parts of complex numbers involving symbolic quantities How in Mathematica can you solve for n the equation 8 - 6 n2 +Â12 n - n3 = 2 + 11 -1 without copying and pasting, or reading off and retyping, the real and imaginary parts (as was done above)? è!!!!!!! H L Use Re and Im. In[22]:= ?Re Re z gives the real part of the complex number z. More… In[23]:= ?Im @ D Im z gives the imaginary part of the complex number z.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    8 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us