17. Weak and Strong Derivatives and Sobolev Spaces for This Section, Let

17. Weak and Strong Derivatives and Sobolev Spaces for This Section, Let

330 BRUCE K. DRIVER† 17. Weak and Strong Derivatives and Sobolev Spaces For this section, let Ω be an open subset of Rd, p,q,r [1, ],Lp(Ω)= p p p ∈ ∞ L (Ω, Ω,m) and Lloc(Ω)=Lloc(Ω, Ω,m), where m is Lebesgue measure on Rd B B d p Bp and Ω is the Borel σ —algebraonΩ. If Ω = R , we will simply write L and Lloc Bp d p d for L (R ) and Lloc(R ) respectively. Also let f,g := fgdm h i ZΩ for any pair of measurable functions f,g : Ω C such that fg L1(Ω). For example, by Hölder’s inequality, if f,g is defined→ for f Lp(Ω) and∈ g Lq(Ω) p h i ∈ ∈ when q = p 1 . The following simple but useful remark will be used (typically without further− comment) in the sequel. 1 1 1 Remark 17.1. Suppose r, p, q [1, ] are such that r− = p− + q− and ft f p q ∈ ∞ r → in L (Ω) and gt g in L (Ω) as t 0, then ftgt fg in L (Ω). Indeed, → → → ftgt fg = (ft f) gt + f (gt g) k − kr k − − kr ft f gt + f gt g 0 as t 0 ≤ k − kp k kq k kp k − kq → → d p p Definition 17.2 (Weak Differentiability). Let v R and f L (Ω)(f Lloc(Ω)) p ∈p ∈ ∈ then ∂vf is said to exist weakly in L (Ω)(Lloc(Ω)) if there exists a function g Lp(Ω)(g Lp (Ω)) such that ∈ ∈ loc (17.1) f,∂vφ = g, φ for all φ C∞(Ω). h i −h i ∈ c (w) The function g if it exists will be denoted by ∂v f. (By Corollary 9.27, there is at 1 (w) most one g L (Ω) such that Eq. (17.1) holds, so ∂v f is well defined.) ∈ loc 1 (w) 1 Lemma 17.3. Suppose f L (Ω) and ∂v f exists weakly in L (Ω). Then ∈ loc loc (w) (1) suppm(∂v f) suppm(f), where suppm(f) is the essential support of f relative to Lebesgue⊂ measure, see Definition 9.14. (w) (2) If f is continuously differentiable on U o Ω, then ∂v f = ∂vf a.e. on U. ⊂ Proof. (1) Since (w) ∂ f,φ = f,∂vφ =0for all φ C∞(Ω supp (f)), h v i −h i ∈ c \ m (w) and application of Corollary 9.27 shows ∂v f =0a.e. on Ω suppm(f). (w) \ (w) So by Lemma 9.15, Ω supp (f) Ω supp (∂v f), i.e. supp (∂v f) \ m ⊂ \ m m ⊂ suppm(f). 1 (2) Suppose that f U is C and let ψ Cc∞(U) which we view as a function d | ∈d in Cc∞(R ) by setting ψ 0 on R U. By Corollary 9.24, there exists ≡ \ γ Cc∞(Ω) such that 0 γ 1 and γ =1in a neighborhood of supp(ψ). ∈ ≤ ≤d 1 d Then by setting γf =0on R supp(γ) we may view γf Cc (R ) and so by standard integration by parts\ (see Lemma 9.25) and∈ the ordinary product rule, (w) ∂ f,ψ = f,∂vψ = γf,∂vψ h v i −h i −h i (17.2) = ∂v (γf) ,ψ = ∂vγ f + γ∂vf,ψ = ∂vf,ψ h i h · i h i REAL ANALYSIS LECTURE NOTES 331 wherein the last equality we have used ψ∂vγ =0and ψγ = ψ. Since Eq. (17.2) is true for all ψ Cc∞(U), an application of Corollary 9.27 with (w) ∈ (w) h = ∂v f(x) ∂vf(x) and µ = m shows ∂v f(x)=∂vf(x) for m —a.e. x U. − ∈ 1 d (w) Lemma 17.4 (Product Rule). Let f Lloc(Ω),v R and φ C∞(Ω). If ∂v f 1 (w) ∈ 1 ∈ ∈ exists in Lloc(Ω), then ∂v (φf) exists in Lloc(Ω) and (w) (w) ∂ (φf)=∂vφ f + φ∂ f a.e. v · v d 1 d Moreover if φ Cc∞(R ) and F := φf L (herewedefine F on R by setting d ∈ (w) ∈ (w) 1 d F =0on R Ω ), then ∂ F = ∂vφ f + φ∂v f exists weakly in L (R ). \ · Proof. Let ψ C∞(Ω), then ∈ c (w) φf, ∂vψ = f,φ∂vψ = f,∂v (φψ) ∂vφ ψ = ∂ f,φψ + ∂vφ f,ψ −h i −h i −h − · i h v i h · i (w) = φ∂ f,ψ + ∂vφ f,ψ . h v i h · i This proves the first assertion. To prove the second assertion let γ Cc∞(Ω) such ∈ d that 0 γ 1 and γ =1on a neighborhood of supp(φ). So for ψ Cc∞(R ), using ≤ ≤ ∈ ∂vγ =0on supp(φ) and γψ C∞(Ω), we find ∈ c F, ∂vψ = γF,∂vψ = F, γ∂vψ = (φf) ,∂v (γψ) ∂vγ ψ h i h i h i h − · i (w) = (φf) ,∂v (γψ) = ∂ (φf) , (γψ) h i −h v i (w) (w) = ∂vφ f + φ∂ f,γψ = ∂vφ f + φ∂ f,ψ . −h · v i −h · v i (w) (w) This show ∂v F = ∂vφ f + φ∂v f as desired. · p Lemma 17.5. Suppose p [1, ),v Rd and f L (Ω). ∈ ∞ ∈ ∈ loc p (w) p (1) If there exists fm m∞=1 Lloc(Ω) such that ∂v fm exists in Lloc(Ω) for { } ⊂ p all m and there exists g L (Ω) such that for all φ C∞(Ω), ∈ loc ∈ c lim fm,φ = f,φ and lim ∂vfm,φ = g,φ m m →∞h i h i →∞h i h i (w) p then ∂v f exists in Lloc(Ω) and ∂vf = g. (w) p (2) If ∂v f exists in Lloc(Ω) then there exists fn Cc∞(Ω) such that fn f p ∈ (w) p→ in L (K) (i.e. limn f fn Lp(K) =0)and ∂vfn ∂v f in L (K) →∞ k − k → for all K @@ Ω. Proof. (1) Since (w) f,∂vφ = lim fm,∂vφ = lim ∂ fm,φ = g, φ m m v h i →∞h i − →∞h i h i (w) p for all φ C∞(Ω),∂v f exists and is equal to g L (Ω). ∈ c ∈ loc (2) Let K0 := and ∅ c Kn := x Ω : x n and d(x, Ω ) 2/n { ∈ | | ≤ ≥ } o (so Kn Kn+1 Kn+1 for all n and Kn Ω as n or see Lemma ⊂ ⊂ o ↑ →∞ 8.10) and choose ψn C∞(K , [0, 1]) using Corollary 9.24 so that ψn =1 ∈ c n on a neighborhood of Kn 1. Given a compact set K Ω, for all sufficiently − ⊂ 332 BRUCE K. DRIVER† large m, ψmf = f on K and by Lemma 17.4 and item 1. of Lemma 17.3, we also have (w) (w) (w) ∂ (ψmf)=∂vψm f + ψm∂ f = ∂ f on K. v · v v This argument shows we may assume suppm(f) is a compact subset of Ω in which case we extend f to a function F on Rd by setting F = f on Ω c p d (w) (w) and F =0on Ω . This function F is in L (R ) and ∂v F = ∂v f. Indeed, d d if φ Cc∞(R ) and ψ Cc∞(R ) is chosen so that supp(ψ) Ω, 0 ψ 1 ∈ ∈ ⊂ ≤ ≤ and ψ =1in a neighborhood of suppm(f), then F, ∂vφ = F, ψ∂vφ = f,∂v (ψφ) h i h i h i = ∂(w)f,ψφ = ψ∂(w)f,φ −h v i −h v i (w) p d which shows ∂v F exist in L (R ) and (w) (w) (w) ∂v F = ψ∂v f =1Ω∂v f. d Let χ C∞(B0(1)) with d χdm =1and set δk(x)=n χ(nx). Then ∈ c R there exists N N and a compact subset K Ω such that fn := F δn ∈ R ⊂ ∗ ∈ Cc∞(Ω) and supp(fn) K for all n N. By Proposition 9.23 and the (w) ⊂ ≥ definition of ∂v F, ∂vfn(x)=F ∂vδn(x)= F (y)∂vδn(x y)dy ∗ d − ZR (w) (w) = F, ∂v [δn(x )] = ∂ F, δn(x ) = ∂ F δn(x). −h − · i h v − · i v ∗ (w) (w) p Hence by Theorem 9.20, fn F = f and ∂vfn ∂v F = ∂v f in L (Ω) as n . → → →∞ d p Definition 17.6 (Strong Differentiability). Let v R and f L , then ∂vf is p ∈ ∈p said to exist strongly in L if the limt 0 (τ tvf f) /t exists in L , where as above → − −(s) τvf(x):=f(x v). We will denote the limit by ∂v f. − p d (s) p (w) It is easily verified that if f L ,v R and ∂v f L exists then ∂v f exists (w) (s) ∈ ∈ ∈ d and ∂v f = ∂v f. To check this assertion, let φ Cc∞(R ) andthenusingRemark 17.1, ∈ (s) 1 τ tvf f ∂v f φ = L — lim − − φ. t 0 t · → Hence (s) τ tvf f τtvφ φ ∂v f φdm = lim − − φdm =lim f − dm d · t 0 d t t 0 d t ZR → ZR → ZR d d = 0 fτtvφdm = f 0τtvφdm = f ∂vφdm, dt| d d · dt| − d · ZR ZR ZR wherein we have used Corollary 5.43 to differentiate under the integral in the fourth (w) (s) equality. This shows ∂v f exists and is equal to ∂v f. What is somewhat more (w) (s) surprising is that the converse assertion that if ∂v f exists then so does ∂v f. The next theorem is a generalization of Theorem 10.36 from L2 to Lp.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    14 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us