A Perturbed Trapezoid Inequality in Terms of the Third Derivative and Applications

A Perturbed Trapezoid Inequality in Terms of the Third Derivative and Applications

View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Victoria University Eprints Repository A PERTURBED TRAPEZOID INEQUALITY IN TERMS OF THE THIRD DERIVATIVE AND APPLICATIONS N.S. BARNETT AND S.S. DRAGOMIR Abstract. Some error estimates in terms of the p−norms of the third deriva- tive for the remainder in a perturbed trapezoid formula are given. Applications to composite quadrature formulae, for the expectation of a random variable and for Hermite-Hadamard divergence in Information Theory are pointed out. 1. Introduction In [4], by the use of Gr¨uss’ integral inequality, the authors have obtained the following perturbed trapezoid inequality. Theorem 1. Let f :[a, b] → R be a twice differentiable function on (a, b) and asume that γ := inf f 00 (x) > −∞ and Γ := sup f 00 (x) < ∞. x∈(a,b) x∈(a,b) Then we have the inequality 1 Z b b − a (b − a)2 0 0 (1.1) f (x) dx − [f (a) + f (b)] + [f (b) − f (a)] b − a a 2 12 (b − a)3 ≤ (Γ − γ) . 12 Using a finer argument based on a pre-Gr¨uss inequality, Cerone and Dragomir [2, p. 121] improved the above result as follows. Theorem 2. Let f have the properties of Theorem 1. Then 1 Z b b − a (b − a)2 0 0 (1.2) f (x) dx − [f (a) + f (b)] + [f (b) − f (a)] b − a a 2 12 1 ≤ √ (b − a)3 (Γ − γ) . 24 5 The main aim of the present work is to obtain some bounds for the left part of (1.2) in terms of the p−norms of f 000 assuming that the function f is twice differentiable on (a, b) and that the second derivative is absolutely continuous on (a, b). A number of applications are also pointed out. Date: January 11, 2001. 1991 Mathematics Subject Classification. Primary 26D15; Secondary 26D10, 41A55. Key words and phrases. Trapezoid inequality. 1 2 N.S. BARNETT AND S.S. DRAGOMIR 2. A Perturbed Trapezoid Formula The following representation lemma holds. Lemma 1. Let f :[a, b] → R be such that the second derivative is absolutely continuous on [a, b]. Then we have the equality: Z b f (a) + f (b) (b − a)2 f (t) dt − (b − a) + [f 0 (b) − f 0 (a)](2.1) a 2 12 1 Z b Z b Z t t + s = u − f 000 (u) du (t − s) dtds. 4 (b − a) a a s 2 Proof. Integrating by parts, we have Z b Z b Z t t + s I : = u − f 000 (u) du (t − s) dtds a a s 2 Z b Z b f 00 (t) + f 00 (s) Z t = (t − s) − f 00 (u) du (t − s) dtds a a 2 s " # Z b Z b f 00 (t)(t − s)2 + f 00 (s)(t − s)2 = − (f 0 (t) − f 0 (s)) (t − s) dtds a a 2 " # 1 Z b Z b Z b Z b = f 00 (t)(t − s)2 dtds + f 00 (s)(t − s)2 dtds 2 a a a a Z b Z b − (f 0 (t) − f 0 (s)) (t − s) dtds. a a By symmetry, Z b Z b Z b Z b J := f 00 (t)(t − s)2 dtds = f 00 (s)(t − s)2 dtds, a a a a and using Korkine’s identity or direct computation, we have Z b Z b K : = (f 0 (t) − f 0 (s)) (t − s) dtds a a " Z b Z b Z b # = 2 (b − a) f 0 (t) tdt − f 0 (t) dt · tdt . a a a Then, I = J − K. Since Z b Z b ! J = f 00 (t) (t − s)2 ds dt a a " # 1 Z b Z b = f 00 (t)(b − t)3 dt + (t − a)3 f 00 (t) dt 3 a a PERTURBED TRAPEZOID INEQUALITY 3 " 1 b Z b 0 3 2 0 = f (t)(b − t) + 3 (b − t) f (t) dt 3 a a # b Z b 0 3 2 0 + f (t)(t − a) − 3 (t − a) f (t) dt a a " " # 1 b Z b 0 3 2 = −f (a)(b − a) + 3 f (t)(b − t) − 2 (b − t) f (t) dt 3 a a " ## b Z b 0 3 2 +f (b)(b − a) − 3 f (t)(t − a) − 2 (t − a) f (t) dt a a " " # 1 Z b = [f 0 (b) − f 0 (a)] (b − a)3 + 3 −f (a)(b − a)2 + 2 (b − t) f (t) dt 3 a " Z b ## − 3 f (b)(b − a)2 − 2 (t − a) f (t) dt a 1 f (a) + f (b) Z b = [f 0 (b) − f 0 (a)] (b − a)3 − (b − a)2 + 2 (b − a) f (t) dt 3 2 a and " " b Z b # 2 2 # b − a K = 2 (b − a) f (t) t − f (t) dt − [f (b) − f (a)] a a 2 " " # # Z b a + b = 2 (b − a) f (b) b − f (a) a − f (t) dt − (b − a)[f (b) − f (a)] a 2 " # Z b a + b a + b = 2 (b − a) f (b) b − f (a) a − f (t) dt − f (b) + f (a) a 2 2 Z b = (b − a)2 [f (a) + f (b)] − 2 (b − a) f (t) dt, a then 1 Z b I = [f 0 (b) − f 0 (a)] (b − a)3 − 2 [f (a) + f (b)] (b − a)2 + 4 (b − a) f (t) dt 3 a Dividing by 4 (b − a) we deduce the desired equality (2.1). The following perturbed version of the trapezoid inequality holds. 4 N.S. BARNETT AND S.S. DRAGOMIR Theorem 3. Let f :[a, b] → R be such that the second derivative is absolutely continuous on [a, b]. Then we have Z b f (a) + f (b) (b − a)2 0 0 (2.2) f (t) dt − (b − a) + [f (b) − f (a)] a 2 12 1 R b R b |t − s|3 kf 000k dtds if f 000 ∈ L [a, b]; 16(b−a) a a [t,s],∞ ∞ b b 1 1 R R 2+ q 000 000 ≤ 1 |t − s| kf k[t,s],p dtds if f ∈ Lp [a, b] , q a a 8(q+1) (b−a) p > 1, 1 + 1 = 1; p q 1 R b R b 2 000 8(b−a) a a (t − s) kf k[t,s],1 dtds 4 (b−a) 000 000 160 kf k[a,b],∞ if f ∈ L∞ [a, b]; 1 2 3+ q (b−a) q 000 000 ≤ 1 kf k[a,b],p if f ∈ Lp [a, b] , 4(3q+1)(4q+1)(q+1) q 1 1 p > 1, p + q = 1; 3 (b−a) 000 48 kf k[a,b],1 , 1 l where khk := R d |h (u)|l du if l ≥ 1 and khk = ess sup |h (u)| . [c,d],l c [c,d],∞ u∈[c,d] (u∈[d,c]) Proof. Denote 1 Z b Z b Z t t + s R (f; a, b) := u − f 000 (u) du (t − s) dtds. 4 (b − a) a a s 2 As Z t Z t t + s 000 000 t + s u − f (u) du ≤ kf k[t,s],∞ u − du s 2 s 2 (t − s)2 = kf 000k , 4 [t,s],∞ Z t t + s 000 u − f (u) du s 2 1 Z t q q 000 t + s ≤ kf k[t,s],p u − du s 2 1 1+ q |t − s| 000 1 1 = 1 kf k[t,s],q , p > 1, + = 1 2 (q + 1) q p q and Z t t + s 000 t + s 000 u − f (u) du ≤ sup u − kf k[t,s],1 s 2 u∈[t,s] 2 (u∈[t,s]) PERTURBED TRAPEZOID INEQUALITY 5 then we can state that Z t t + s 000 (2.3) u − f (u) du s 2 2 (t−s) kf 000k if f 000 ∈ L [a, b]; 4 [t,s],∞ ∞ 1+ 1 |t−s| q 000 000 ≤ 1 kf k[t,s],q if f ∈ Lp [a, b] , 2(q+1) q 1 1 p > 1, + = 1; p q |t−s| 000 2 kf k[t,s],1 . Taking the modulus of R (f; a, b) we get, by (2.3), |R (f; a, b)| Z b Z b Z t 1 t + s 000 ≤ |t − s| u − f (u) du dtds 4 (b − a) a a s 2 1 R b R b |t − s|3 kf 000k dtds if f 000 ∈ L [a, b]; 4 a a [t,s],∞ ∞ b b 1 1 1 R R 2+ q 000 000 ≤ 1 |t − s| kf k[t,s],p dtds if f ∈ Lp [a, b] , q a a 4 (b − a) 2(q+1) p > 1, 1 + 1 = 1; p q 1 R b R b 2 000 2 a a |t − s| kf k[t,s],1 dtds which proves the first inequality in (2.2). Now, consider the double integral Z b Z b Z b "Z t Z b # m m m Im : = |t − s| dtds = (t − s) ds + (s − t) ds dt a a a a t " # Z b (t − a)m+1 + (b − t)m+1 2 (b − a)m+2 = dt = a m + 1 (m + 1) (m + 2) for all m > 0.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    12 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us