Schwinger Effect: Pair Creation in Strong Fields

Schwinger Effect: Pair Creation in Strong Fields

SCHWINGER EFFECT: PAIR CREATION IN STRONG FIELDS BLTP DUBNA, NOVEMBER 11, 2005 1 PAIR CREATION IN STRONG FIELDS: EXAMPLES Heavy Ion Collisions • Magnetars: B 1015G • ∼ Optical and X-Ray Lasers: • E 1015 1017 V/m ∼ ÷ ARTIST VIEW OF A MAGNETAR (NASA) ILC PROJECT (DESY HAMBURG) BLTP DUBNA, NOVEMBER 11, 2005 2 DYNAMICAL SCHWINGER EFFECT IN THE FOCUS OF AN OPTICAL LASER David Blaschke (University Bielefeld & JINR Dubna) Craig Roberts (Argonne National Laboratory) Sebastian Schmidt (Helmholtz-Gemeinschaft Bonn) Alexander Prozorkevich, Stanislav Smolyansky (Saratov State University) Introduction: Schwinger Effect • Kinetic formulation of pair production • + Application to e e− production in optical lasers • Example: Jena experiment • Outlook: XFEL and other systems • Inertial mechanism for particle production • Application to conformal cosmology: massive vector bosons • BLTP DUBNA, NOVEMBER 11, 2005 3 SCHWINGER EFFECT: PAIR CREATION IN STRONG FIELDS Pair creation as barrier penetration + To “materialize” a virtual e e− pair in a in a strong constant field • constant electric field E the separation d must be sufficiently large positive levels positive levels xE eEd = 2mc2 ε 2 T Probability for separation d as quantum • ε fluctuation 2ε 2 T/E T d 2m2c3 2E P exp = exp = exp crit / −λc − e~E − E negative levels negative levels Emission sufficient for observation when E • ∼ Ecrit m2c3 Schwinger result (rate for pair production) E 1:3 1018V=m crit ≡ e~ ' × dN (eE)2 1 1 E = exp nπ crit For time-dependent fields: Kinetic Equation d3xdt 4π3 n2 − E • Xn=1 approach from Quantum Field Theory J. Schwinger: “On Gauge Invariance and Vacuum Polarization”, Phys. Rev. 82 (1951) 664 BLTP DUBNA, NOVEMBER 11, 2005 4 KINETIC FORMULATION OF PAIR PRODUCTION Kinetic equation for the single particle distribution function f(P¯; t) =< 0 ay (t)a ¯(t) 0 > j P¯ P j df (P¯; t) @f (P¯; t) @f (P¯; t) 5 = + eE(t) dt @t @P (t) k E = 0.7 t 0 1 ¯ 4 E = 1.0 = (t) dt0 (t0)[1 2f (P ; t0)] cos[x(t0; t)] 0 2W Z W E0 = 1.5 −∞ ) 0 E0 = 3.0 ¯ /E 3 Kinematic momentum P = (p1; p2; p3 eA(t)), π − eE(t)" (t) = ? ; /exp(− 2 − 2 τ) W ! (t) ( − f 2 2 2 2 1 where !(t) = " + P (t), with " = m + p¯ q ? k ? ? and x(t0; t) = 2[Θ(t) Θ(t0)]. p − 0 t −3 −2 −1 0 1 2 3 4 5 Θ(t) = dt0!(t0) τ Z Schmidt, Blaschke, et al: “Non-Markovian effects −∞ Constant field: Schwinger limit reproduced in strong-field pair creation” π Phys. Rev. D 59 (1999) 094005 f(τ ) = exp − ! 1 E 0 BLTP DUBNA, NOVEMBER 11, 2005 5 PAIR PRODUCTION IN MULTI-TW LASER FIELDS (I) + Observable: photon pair (e + e− 2 γ) Kinetic formulation for E(t) = A_(t) in ! − the Hamiltonian gauge Aµ = (0; 0; 0; A(t)) − γ e p 1 t p df(p; t) 1 + 2 γ = ∆(p; t) dt0 ∆(p; t0) [1 2f(p; t0)] e dt 2 Z − t0 t dν cos 22 dt1 "(p; t1)3; = dp1dp2 σ(p1; p2)f(p1; t)f(p2; t) × Z dV dt Z t0 2 2 4 5 (v1 v2) v1 v2 ; where × p − − j × j cross-section σ of two-photon annihilation m2 + p2 ∆(p; t) = eE(t) ? ; πe4 p"2(p; t) σ(p ; p ) = (τ 2 + τ 1=2) 1 2 2m2τ 2(τ 1) − p 2 2 2 − "( ; t) = m + p + [p3 eA(t)] pτ + pτ 1 q ? − ln − (τ + 1) τ(τ 1) ; The particle number density × pτ pτ 1 − − − − p dp t-channel kinematic invariant n(t) = 2 f(p; t) Z (2π)3 (p + p )2 1 τ = 1 2 = [(" + " )2 (p + p )2]: 4m2 4m2 1 2 − 1 2 BLTP DUBNA, NOVEMBER 11, 2005 6 PAIR PRODUCTION IN MULTI-TW LASER FIELDS (II) Time dependence of the density n(t) for Time dependence of the density n(t) for a a monochromatic field Gaussian wave packet 2π 2 E(t) = Em sin !t; 0 t NT; T = (t/τL) ≤ ≤ ! E(t) = Eme− sin !t: BLTP DUBNA, NOVEMBER 11, 2005 7 APPLICATION TO JENA MULTI-TW LASER Laser diagnostic by nonlinear Thomson scat- tering off e− in a He-gas jet Pulse intensity: I = 1018 W/cm2, duration: Colliding laser pulses of a Ti:sapphire laser , wavelength: nm, cross- 5 6 τL 80fs λ = 795 with Em=Ecrit 3 10− and !=m = 2:84 10− ∼ ≈ · · size: z0 = 9µm B. Liesfeld et al: “Single-shot autocorrelation at relativistic intensity”, Jena Preprint (2004) BLTP DUBNA, NOVEMBER 11, 2005 8 APPLICATION TO JENA MULTI-TW LASER Momentum distribution of created e+e − Stratum-like structure of the momentum dis- pairs: p stands for transversal (solid line) and tribution at the time of zero field amplitude longitudinal (dotted line) momentum. t = T=2, determining the residual density. Blaschke, Prozorkevich, Smolyansky, Tarakanov, Proc. ’Kadanoff-Baym Eqs. III’, Kiel (2005) BLTP DUBNA, NOVEMBER 11, 2005 9 APPLICATION TO JENA MULTI-TW LASER Equilibrium-like momentum distribution at the time of maximal field amplitude t = T=4. Stratum-like structure of the momentum dis- tribution at the time of zero field amplitude t = T=2, determining the residual density. BLTP DUBNA, NOVEMBER 11, 2005 10 APPLICATION TO JENA MULTI-TW LASER (II) Analytic estimate for E E , f 1 m crit 1 n(t) = dp (m2 + p2 ) 2(2π)3 Z ? 2 t t eE(t1) 0 1 dt1 2 exp 2i dt2"(t2) × Z " (t1) Z t0 B t1 C @ A Mean pair density (eE )2 m2 + 2"2 < n > = m dp 3!2 + 4"2 12(2π)3 Z "4(!2 4"2)2 − "!3 + sin (T ") cos [(2N + 1)T "] π(!2 4"2) − + 3 Low frequency limit ! m Number of e e− pairs in the volume λ for a 2 2 weak field (Jena Ti:AlO3 laser, solid line) and 3 (eE) m n 1:6 10− = nr for near-critical field Em=Ecrit = 0:24, λ = 0:15 h i ≈ × m ! nm (X-FEL, dashed line). Several gamma-pair events per laser pulse ! BLTP DUBNA, NOVEMBER 11, 2005 11 APPLICATION TO JENA MULTI-TW LASER (III) Time dependence of the γ quanta num- + Wavelength dependence of the mean density ber from e e− annihilation for the case of + 5 of e e− pairs (solid line) and their annihila- a monochromatic field with E =E = 3 10− . m crit · tion rate (dotted line). BLTP DUBNA, NOVEMBER 11, 2005 12 LASER PARAMETERS AND DERIVED QUANTITIES Laser Parameters Optical X-ray FEL Focus: Design Focus: Focus: Diffraction limit DESY Available Goal Wavelength λ 1 µm 0.4 nm 0.4 nm 0.15 nm ~ hc Photon energy ! = λ 1.2 eV 3.1 keV 3.1 keV 8.3 keV Peak power P 1 PW 110 GW 1.1 GW 5 TW Spot radius (rms) σ 1 µm 26 µm 21 nm 0.15 nm Coherent spike length (rms) t 500 fs 20 ps 0.04 fs 0.04 fs 0.08 ps 4 ÷ Derived Quantities P 26 W 19 W 23 W 31 W Peak power density S = 2 3 10 2 5 10 2 8 10 2 7 10 2 πσ × m × m × m × m Peak electric field = pµ c S 4 1014 V 1 1011 V 2 1013 V 2 1017 V E 0 × m × m × m × m 4 7 5 Peak electric field/critical field = c 3 10− 1 10− 1 10− 0.1 E~!E × 6 × × Photon energy/ rest energy 2 e mec 2 10− 0:006 0:006 0:02 ~! × 3 4 2 Adiabaticity parameter γ = e λ 9 10− 6 10 5 10 0.1 E− × × × A. Ringwald, Phys. Lett. B 510 (2001) 107; hep-ph/0112254 BLTP DUBNA, NOVEMBER 11, 2005 13 ACCUMULATION EFFECT IN NEAR-CRITICAL FIELDS 2 Particle number density n(T ; E0) = a0(E0) sin (2πT ) + ρ(T; E0)T ; T = t/λ 10−10 10−11 Results are nicely fitted with 10−12 ) −1 10−13 ρ(T; E0) = ρ(E0) + ρ0(E0)T : −14 11 10 For E = 0:5 E0, a0 = 1:2 10− fm 3, period 12 3 × − −3 −15 ρ = 5:4 10− fm− /period, ρ0/ρ = 0:0033/period. 10 × (fm −16 ρ 10 Comparison with Schwinger rate 10−17 10−18 4 0.1 0.2 0.3 0.4 0.5 m λ E0 bπEcr=E0 ρ = a 3 e− E0/Ecr 4π Ecr Attention: Accumulation rate ρ(0; E0) (solid), E0 0:35 Ecr backreactions become important! Schwinger rate a = 1; b = 1 (dashed), ∼ a = 0:305; b = 1:06 (dot-dashed) Roberts, Schmidt, Vinnik: “Quantum effects with an X-Ray Free-Electron Laser”, Phys. Rev. Lett (2002) 153901 BLTP DUBNA, NOVEMBER 11, 2005 14 INERTIAL MECHANISM OF PAIR PRODUCTION µ 2 Scalar field [@µ@ + m (t)]φ(x) = 0 Example: Cooling hadronic fireball T (t) produces pion excess at chiral transition T Kinetic equation, non-Markovian source χ via scalar meson decay: σ 2 π t ! df(p; t) 1 = ∆(p; t) dt0 ∆(p; t0) [1+2f(p; t0)] dt 2 Z t0 t mσ cos 22 dt1 !(p; t1)3; × Z 4 t0 5 where m π !_ (p; t) m(t)m_ (t) ∆(p; t) = = ; !(p; t) !2(p; t) 2 2 !(p; t) = m (t) + p T T p χ The particle number density dp Low-momentum pion excess observed at n(t) = 2 f(p; t) CERN-SPS, detailed comparison: Z (2π)3 DB, Prozorkevich, Smolyansky, in prep. BLTP DUBNA, NOVEMBER 11, 2005 15 INERTIAL MECHANISM FOR VECTOR BOSON PRODUCTION µ 2 µ Massive vector boson [@µ@ + m (t)]φ(x) = 0 , constraint @µu = 0 Kinetic equation, transversal (fi; i = 1; 2) and longitudinal (f3) distributions t 1 f_i(p; t) = ∆(p; t) dt0∆(p; t0)[1 + 2fi(p; t0)] cos 2θ(p; t; t0); 2 Z −∞ t 1 m2(t) !2(t ) _ p p p p p 0 p p p f3( ; t) = 2∆m( ; t)f3( ; t) + ∆( ; t) 2 dt0∆( ; t0) 2 [2f3( ; t0) + Q( ; t0)] cos 2θ( ; t; t0): − 2 ! (t) Z m (t0) −∞ 2 mm_ p ∆ = 2 ; ∆ = ∆ 2 : D.B., A.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    19 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us