Magnetic Dipole Field

Magnetic Dipole Field

Fundamentals of Magnetism Part II Albrecht Jander Oregon State University Real Magnetic Materials, Bulk Properties M-H Loop B-H Loop M B Bs Ms BR MR H H Hci Hc MS - Saturation magnetization Bs - Saturation flux density Hci - Intrinsic coercivity BR - Remanent flux density MR - Remanent magetization Hc - Coercive field, coercivity Note: these two figures each present the same information because B=µo(H+M) Minor Loops M H M M DC demagnetize AC demagnetize H H Effect of Demag. Fields on Hysteresis Loops Measured loop Actual material loop Measured M Measured M Applied H Internal H = 푀 푁푁 Types of Magnetism Diamagnetism – no atomic magnetic moments Paramagnetism – non-interacting atomic moments Ferromagnetism – coupled moments Antiferromagnetism – oppositely coupled moments Ferrimagnetism – oppositely coupled moments of different magnitude Diamagnetism M • Atoms without net magnetic moment H e- H is small and negative Diamagnetic substances: -6 휒 Ag -1.0x10 Atomic number -6 Be -1.8x10 Orbital radius -6 Atomic density Au -2.7x10 -6 H2O* -8.8x10 = 6 2 2 NaCl -14x10-6 푁퐴휌 휇0푍푒 푟 휒 − Bi -170x10-6 푊퐴 푚푒 Graphite -160x10-6 Pyrolitic (┴) -450x10-6 graphite (║) -85x10-6 * E.g. humans, frogs, strawberries, etc. See: http://www.hfml.ru.nl/froglev.html Paramagnetism • Consider a collection of atoms with independent magnetic moments. • Two competing forces: spins try to align to magnetic field but are randomized by thermal motion. H H M µ0mH << kBT µ0mH > kBT colder hotter • Susceptibility is small and positive H • Susceptibility decreases with temperature. • Magnetization saturates (at low T or very large H) Langevin Theory of Paramagnetism* H • Energy of a magnetic moment, m, in a field, H E = −µ0m⋅ H = −µ0mH cos(θ ) θ m • Independent moments follow Boltzmann statistics − µ θ P(E) = e E / kBT = e 0mH cos( )/ kBT • The “density of states” on the sphere is dn = 2πr 2 sin(θ )dθ • So the probability of a moment pointing in direction θ to θ+dθ is µ θ e 0mH cos( )/ kBT sin(θ ) p(θ ) = π µ θ ∫ e 0mH cos( )/ kBT sin(θ )dθ 0 Paul Langevin N (1872-1946) • The magnetization of a sample with moments/volumeπ will be µ θ 0mH cos( )/ kBT θ θ θ π ∫ e cos( )sin( )d = θ = θ θ θ = 0 M Nm cos( ) Nm∫ cos( ) p( )d Nm π µ θ 0 ∫ e 0mH cos( )/ kBT sin(θ )dθ • Which any fool can see is just: 0 µ0mH kBT M = Nmcoth − kBT µ0mH *Langevin, P., Annales de Chem. et Phys., 5, 70, (1905). Curie’s Law* 1 • Langevin paramagnetism: L(a) = coth(a) − a 1 1 µ0mH kBT M = Nmcoth − kBT µ0mH L( a) 0 • For µοmH<<kBT (most practical situations) slope = 1/3 2 Nm 1 1 M = µ H 10 0 10 0 10 a 10 Pierre Curie 3kBT Curie constant (1859-1906) • Which gives Curie’s Law: Curie’s Law M Nm2 C χ = = µ0 = H 3kBT T 1 Note: quantization of the magnetic χ moment requires a correction to the above classical result which assumes all directions are allowed: 0 M Ng 2µ 2 J (J +1) C T χ = = µ B = 0 2 H 3J kBT T *Curie, P., Ann. Chem. Phys., 5, 289 (1895) Pauli Paramagnetism No magnetic field In magnetic field, B Electron energy Electron energy [J or (eV)] [J or (eV)] Fermi level, Ef B [T] ∆E = 2µBB [#/J-m3] [#/J-m3] Density of states, D(E) Density of states 2 Μ = µB BD(Ef ) Paramagnetic Substances Liquid oxygen Paramagnetic susceptibility: -6 Sn 0.19x10 -6 Al 1.65x10 -6 O2 (gas) 1.9x10 W 6.18x10-6 Pt 21.0x10-6 Mn 66.1x10-6 Curie-Weiss* Law • Consider interactions among magnetic moments: E = −µ0m⋅(H +αM ) where M represents the average orientation of the surrounding magnetic moments (“Mean field theory”) and α is the strength of the interactions • The Langevin equation then becomes: µ0m(H +αM ) kBT Pierre Weiss M = Nmcoth − (1865–1940) kBT µ0m(H +αM ) Curie-Weiss Law • Again for µοmH<<kBT Nm2 M = µ0 (H +αM ) 3kB T 1 χ • Which gives the Curie-Weiss Law: M C C χ = = = H T −αC T −T C 0 T C T αNm2 T = µ C 0 Curie Temperature 3kB *Weiss, P., J. de Phys., 6, 661 (1907) Weiss Theory* of Ferromagnetism • Starting with the Langevin equation with “mean field” interactions M µ m(H +αM ) k T 0 M = Nmcoth 0 − B M S kBT µ0m(H +αM ) • Set the external field to zero, H=0 T 0 C µ0m(αM ) kBT M = Nmcoth − T kBT µ0m(αM ) Curie Temperature • This can be solved for M graphically: Plot both sides of the equation as a function of µ mαM x = 0 M S kBT 1 right side of eq. Intersection is spontaneous magnetization, M x 1 s M 3 coth(x)− x Note: line with slope proportional to T M Langevin function 0 Asymptote of Langevin function is 1/3 so left side of eq. the only solution for MS is zero when M k T kBT 1 = B x > 2 µ 2α M 0 µ0 Nm α 0 Nm 3 Spontaneous magnetization decreases µ mαM = 0 with temperature and vanishes at: x 2 kBT µ0 Nm α TC = *Weiss, P., J. de Phys., 6, 661 (1907) 3kB Weiss Theory of Ferromagnetism • Fits data very well! • Again, corrections need to be made for quantization of magnetic moments (a) Classical result using Langevin function (b) Quantum result using Brilloun function µ0m(H +αM ) M = Nm tanh kBT (c) Measurements Points to remember: • Ferromagnets have spontaneous magnetization, MS even in zero field • MS goes to zero at the Curie temperature, TC • Above TC material is paramagnetic. Ferromagnetic Materials Material: Ms [A/m] TC [°C] Ni 0.49x106 354 Fe 1.7x106 770 Co 1.4x106 1115 Gd 19 Dy -185 NdFeB 1.0x106 310 NiFe ~0.8x106 447 FeCoAlO 1.9x106 Ferromagnetic Breakfast -5 One Flake of Total Cereal x 10 2 1 ) 2 0 Moment (A/m -1 -2 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 Field (T) Ferromagnetic Exchange Interaction J m E = −µ m2 cos(∆θ ) mi ,mi+1 0 J - e e- e- e- e- e- e- e- Antiferromagnetic and Ferrimagnetic Materials Negative exchange coupling: Antiferromagnet Ferrimagnet Crystalline Anisotropy θ 2 4 • Uniaxial: E = Ku sin θ + K2 sin θ +... easy axis easy plane Ku > 0 Ku < 0 2 2 2 2 2 2 2 2 2 θ1 • Cubic: E = K1(α1 α 2 +α 2α3 +α1 α3 ) + K2 (α1 α 2α3 ) +... θ θ3 2 αi = cos(θi ) 4 easy axes 3 easy axes K1 > 0 K1 < 0 Crystalline Anisotropies of Some Magnetic Materials 3 3 Material Structure K1 [J/m ] K2 [J/m ] x105 x105 Cobalt hcp 4.1 1.5 Iron bcc 0.48 -0.1 Nickel fcc -0.045 -0.023 SmCo5 170 Other sources of anisotropy Induced • Heat in a field, stress, plastic deformation (e.g., rolling), etc. Exchange anisotropy • coupling between FM and AFM materials Stoner-Wohlfarth Theory* Anisotropy energy Magnetostatic energy = ( ) = ( ) 2 E푎푎푎푎 푢 푚푎 푒푒 푎 퐸 퐾Hard푉 푠푠푠 휃 Hard 퐸 푁 푀 푉푉푉푠 휃 푁푒푒 Easy Easy Easy axis M θ 0 180 360 Total energy (Magnetic field along easy axis) E Hard axis θ 0 180 360 * E. Stoner and P. Wohlfarth, “A Mechanism of Magnetic Hystereisis in Heterogeneous Alloys”, IEEE Trans. Magn., 27, 3475, 1991 Stoner-Wohlfarth Theory* Anisotropy energy Magnetostatic energy = ( ) = ( ) 2 E푎푎푎푎 푢 푚푎 푒푒 푎 퐸 퐾Hard푉 푠푠푠 휃 Hard 퐸 푁 푀 푉푉푉푠 휃 = 0 푁푒푒 Easy Easy Easy axis θ 0 180 360 Total energy (Magnetic field along easy axis) E 푀푒푒 M θ 푁푒푒 0 180 360 Stoner-Wohlfarth Theory* Anisotropy energy Magnetostatic energy = ( ) = ( ) 2 E푎푎푎푎 푢 푚푎 푒푒 푎 퐸 퐾Hard푉 푠푠푠 휃 Hard 퐸 푁 푀 푉푉푉푠 휃 = 1 푁푒푒 Easy Easy Easy axis θ 0 180 360 Total energy (Magnetic field along easy axis) E 푀푒푒 M θ 푁푒푒 0 180 360 Stoner-Wohlfarth Theory* Anisotropy energy Magnetostatic energy = ( ) = ( ) 2 E푎푎푎푎 푢 푚푎 푒푒 푎 퐸 퐾Hard푉 푠푠푠 휃 Hard 퐸 푁 푀 푉푉푉푠 휃 = 2 푁푒푒 Easy Easy Easy axis θ 0 180 360 Total energy (Magnetic field along easy axis) E M 푀푒푒 θ 푁푒푒 0 180 360 Stoner-Wohlfarth Theory* Anisotropy energy Magnetostatic energy = ( ) = ( ) 2 E푎푎푎푎 푢 푚푎 푒푒 푎 퐸 퐾Hard푉 푠푠푠 휃 Hard 퐸 푁 푀 푉푉푉푠 휃 = 3 푁푒푒 Easy Easy Easy axis θ 0 180 360 Total energy (Magnetic field along easy axis) E 푀푒푒 M θ 푁푒푒 0 180 360 Stoner-Wohlfarth Theory* Anisotropy energy Magnetostatic energy = ( ) = ( ) 2 E푎푎푎푎 푢 푚푎 푒푒 푎 퐸 퐾Hard푉 푠푠푠 휃 Hard 퐸 푁 푀 푉푠푠푠 휃 = 1 푁푒푒 Easy Easy Easy axis θ 0 180 360 Total energy (Magnetic field along easy axis) E 푀푒푒 M θ 푁푒푒 0 180 360 Stoner-Wohlfarth Theory* Anisotropy energy Magnetostatic energy = ( ) = ( ) 2 E푎푎푎푎 푢 푚푎 푒푒 푎 퐸 퐾Hard푉 푠푠푠 휃 Hard 퐸 푁 푀 푉푉푉푠 휃 = 0 푁푒푒 Easy Easy Easy axis θ 0 180 360 Total energy (Magnetic field along easy axis) E 푀푒푒 M θ 푁푒푒 0 180 360 Stoner-Wohlfarth Theory* Anisotropy energy Magnetostatic energy = ( ) = ( ) 2 E푎푎푎푎 푢 푚푎 푒푒 푎 퐸 퐾Hard푉 푠푠푠 휃 Hard 퐸 푁 푀 푉푉푉푠 휃 = 0 푁푒푒 Easy Easy Easy axis θ 0 180 360 Total energy (Magnetic field along easy axis) E 푀푒푒 M θ 푁푒푒 0 180 360 Stoner-Wohlfarth Theory* Anisotropy energy Magnetostatic energy = ( ) = ( ) 2 E푎푎푎푎 푢 푚푎 ℎ푎푎푎 푎 퐸 퐾Hard푉 푠푠푠 휃 Hard 퐸 푁 푀 푉푠푠푠 휃 푁ℎ푎푎푎 Easy Easy Easy axis M θ 0 180 360 Total energy (Magnetic field along easy axis) E Hard axis θ 0 180 360 Stoner-Wohlfarth Theory* Anisotropy energy Magnetostatic energy = ( ) = ( ) 2 E푎푎푎푎 푢 푚푎 ℎ푎푎푎 푎 퐸 퐾Hard푉 푠푠푠 휃 Hard 퐸 푁 푀 푉푠푠푠 휃 = 0 푁ℎ푎푎푎 Easy Easy Easy axis θ 0 180 360 Total energy (Magnetic field along easy axis) E 푀ℎ푎푎푎 M θ 푁ℎ푎푎푎 0 180 360 Stoner-Wohlfarth Theory* Anisotropy energy Magnetostatic energy = ( ) = ( ) 2 E푎푎푎푎 푢 푚푎 ℎ푎푎푎 푎 퐸 퐾Hard푉 푠푠푠 휃 Hard 퐸 푁 푀 푉푠푠푠 휃 = 1 푁ℎ푎푎푎 Easy Easy Easy axis θ 0 180 360 Total energy (Magnetic field along easy axis) E 푀ℎ푎푎푎 M θ 푁ℎ푎푎푎 0 180 360 Stoner-Wohlfarth Theory* Anisotropy energy Magnetostatic energy = ( ) = ( ) 2 E푎푎푎푎 푢 푚푎 ℎ푎푎푎 푎 퐸 퐾Hard푉 푠푠푠 휃 Hard 퐸 푁 푀 푉푠푠푠 휃 = 2 푁ℎ푎푎푎 Easy Easy Easy axis θ 0 180 360 Total energy (Magnetic field along easy axis) E 푀ℎ푎푎푎 M θ 푁ℎ푎푎푎 0 180 360 Stoner-Wohlfarth Theory* Anisotropy energy Magnetostatic energy = ( ) = ( ) 2 E푎푎푎푎 푢 푚푎 ℎ푎푎푎 푎 퐸 퐾Hard푉 푠푠푠 휃 Hard 퐸 푁 푀 푉푠푠푠 휃 = 3 푁ℎ푎푎푎 Easy Easy Easy axis θ 0 180 360 Total energy (Magnetic field along easy axis) E 푀ℎ푎푎푎 M θ 푁ℎ푎푎푎 0 180 360 Stoner-Wohlfarth Theory* Anisotropy energy Magnetostatic energy = ( ) = ( ) 2 E푎푎푎푎 푢 푚푎 ℎ푎푎푎 푎 퐸 퐾Hard푉 푠푠푠 휃 Hard 퐸 푁 푀 푉푠푠푠 휃

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    84 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us