Botanical Studies (2010) 51: 163-170. PHYSIOLOGY Induction of compression wood in seedlings of Taiwan incense cedar (Calocedrus macrolepis var. formosana) during the mid-season growth pause Ching-ChuTSAI1,Shiang-JiuunCHEN2,Ching-TeCHIEN3,*,andLing-LongKUO-HUANG1,2,* 1Institute of Ecology and Evolutionary Biology, National Taiwan University, 1 Roosevelt Rd., Sec. 4 Taipei 10617, Taiwan 2Department of Life Science, National Taiwan University, 1 Roosevelt Rd., Sec. 4 Taipei 10617, Taiwan 3Division of Silviculture, Taiwan Forestry Research Institute, 53 Nanhai Rd., Taipei 10066, Taiwan (ReceivedMarch10,2009;AcceptedNovember25,2009) ABSTRACT. Taiwanincensecedar, Calocedrus macrolepisvar.formosana,isanendemicvarietywith excellentwoodproperty.Howevertheannualradialgrowthisslowandwoodqualitywasfrequentlyabating bythepresenceofcompressionwood.Inthisstudy,amid-seasongrowthpausewasfoundinthebranches aswellastheseedlings.Theeffectsofgrowthpauseoncompressionwoodformationwereaccessed.The seedlingsofTaiwanincensecedarwereinducedtoformcompressionwoodbyindole-3-aceticacid(IAA) aswellashorizontallyleaninginthegrowthpause.Theresultsshowedthatalthoughthisgrowthpause decreasedthevascularcambialactivityinstandingcontrolseedlings,vascularcambiumofalltreatedseedlings reactedtotheinductionandexhibitedhighercambialactivityintheexpectedcompressionwoodformingside. TheslowannualradialgrowthofTaiwanincensecedarwasduetothetardygrowingnatureratherthanthe lengthofgrowingseason.Thisnaturemaycausetheslowpresentationrateofcompressionwoodobservedin differenttreatmentsinTaiwanincensecedar. Keywords: Calocedrus macrolepis var. formosana;Compressionwood;Horizontallyleaning;Indole-3-acetic acid;Vascularcambium. INTRODUCTION Compressionwoodformationisprobablyaffectedby thegravitystatusandasymmetricaldistributionofindole- Mid-season growth pause was often revealed in 3-aceticacid(IAA)(Timell,1986).TheeffectofIAAon temperate-zonespecies.Itwasbelievedcontributeto celldivisionandcelldifferentiationweredocumented optimizethegrowthconditionofthetree(reviewedby (TaizandZeiger,2006),andIAAwasalsoproposedas Larson,1994).Theoccurrenceofgrowthpausemightbe beingapositionalsignalofwoodformation(Ugglaet relatedtothetransitionfromearlywoodtolatewoodorthe al.,1996,1998,2001).AlthoughtheroleofIAAinthe physiologyofcambiumtoreactsomeunfavorablegrowth formationofcompressionwoodiscontroversial,IAA conditionswhichusuallyresultintheformationoffalse readilyinducescompressionwoodinseveralconiferous ring (Larson, 1994). The influence of mid-season growth trees (Onaka, 1940; Timell, 1986), such as Pinus pauseonthecompressionwoodformationisnotclear. thunbergii, Ginkgo biloba, Chamaecyparis obtuse, and Compression wood occurs in the basal part of Cryptomeria japonica.Theinductionofcompression branches of coniferous trees and is often accompanied woodbyplacingseedlingsatdifferentangleswasalso by significant eccentricity in the cross section.It is investigated(Yumotoetal.,1983;Yamashitaetal.,2007). characterized by the presence of circular celllumen, Thelevelofcompressionwood,suchastheabsenceof intercellular space, highly lignified layer in the cell wall S3layer,thepresenceofS2Llayerandhelicalcavity, of secondary tracheid (S2L layer) and spiralcavities highlignincontent,andhighpercentageofintercellular (Timell,1986).Theformationofcompressionwoodand spaces,wasraisedwhentheinclinationangleofseedling theasymmetricaldistributionofgrowthstressesincrease increasedto20~30°.However,littledifferencewasfound the heterogeneity of the wood quality and consequently astheinclinationanglewasabove30°. cause considerable disadvantages in wood processing, Taiwanincensecedar,Calocedrus macrolepisvar. thusreducingitsvalue(MattheckandKubler,1995). formosana(florin)Cheng&Fu,isanendemictree varietyofTaiwan.Withitsexcellentwoodproperties,C. *Corresponding author: E-mail: [email protected]. macrolepisisoneofthemostimportantplantationtree tw; [email protected];Tel: 866-2-33662510; Fax: speciesinTaiwanduringthelast20years.Taiwanincense 866-2-23673374. cedarislistedasoneoftheFive-Precious-Woodsin 164 Botanical Studies, Vol. 51, 2010 Taiwan(Liao,1976).Thefragrantsawdustofthisspecies haslongbeenusedforjosssticksandthusitwasnamed Taiwanincensecedar.Taiwanincensecedarisdistributed inhillsidesofnaturalforestsbetween300and1,800min elevations(Luetal.,1994).However,theannualradial growthisslowercomparedtotwootherimportantsister species,Taiwanyellowcypress(Chamaecyparis obtusa var.formosana)andTaiwanredcypress(C. formosensis) (Wangetal.,1987). Mostpreviousstudiesofcompressionwoodformation focusedonfast-growingtreespeciesinthegrowing season.Thepurposeofthepresentstudywastoexamine the role of IAA in compression wood formation in Figure 1.Experimentaldesign.(A)Group1,seedlingswere seedlingsofTaiwanincensecedarduringagrowthpause keptstandingasthecontrol.(B)Group2,seedlingsweretreated withIAAononeside.(C)Group3,seedlingswereleaned periodbymonitoringthegrowthofcambiuminducedby horizontally.(D)Group4,seedlingsweretreatedwithIAAon IAA.Meanwhile,wealsoplacedseedlingshorizontally theuppersideofthestemandwereleanedhorizontally. The toinvestigatestimulationofcompressionwoodformation IAAapplicationsitewascarefullyorientedtobeontheupper withandwithoutthepresenceofIAA.Basedoncambial sideofthetrunk.Sampleswerecollected5cmbelowthetreated activityrepresentedbycambiumcellanddifferentiating site.Eachgroupcontainedthreeseedlings. xylem cell numbers as described byTimell (1986), cambiumgrowthactivitieswerecarefullyexamined amongthedifferenttestconditions.Wehypothesizedthat thecompressionwoodwouldformduringthemid-season barkwithalittlesecondaryphloemtissuewascutusinga growthpause,especiallyinatardygrowingtree,andthe knifebladetoformatangentialwound(0.2cminlength compressionwoodformationshouldexistagainstthe × 1 cm in width), and then 1% IAA-lanolin (80 μL 5% stresscausedbyleaningorapplicationofIAA,orboth. IAAmixedwith400mgmeltedlanolin)wasdirectly appliedtothewoundsite.Thewoundsitewascovered withaluminumfoilandventilatedtapetoprotectthe MATERIALS AND METHODS IAAfromlight(Figure1B).Group3seedlingswere Seasonal changes in cambial activity laidhorizontallytoinducecompressionwoodformation (Figure1C).Group4seedlingsweretreatedasgroup2, Seasonalchangesincambiumcellactivityinamature butlaidhorizontallyimmediatelyafterIAAapplication. treeofTaiwanincensecedarweremeasured.Thetree Inordertodistinguishthecompressionwoodinducedby wasonthecampusofNationalTaiwanUniversityandits gravity,theIAAapplicationsitewascarefullyoriented D.B.H.(diameteratbreastheight)was110cmandheight sothatitwasontheuppersideofthetrunk(Figure1D). isabout12m.Sampleswerecollectedfromtheupper Thecontrolgroupseedlingswereharvestedat4different sidesofbrancheson15March,9April,7May,7June,5 times,i.e.days0(11June2005),4(15June),6(17June), July,8August,9October,and6November2004. and13(24June),andthreeseedlingswereharvestedeach time.Thetreatmentgroupswereharvestedafterdays4,6, Seedling selection and13.Discs(1cminthickness)werecollectedfrom20 Thirty-nine2-year-oldseedlingsofTaiwanincense cmabovethebasalpartor5cmbelowtheIAAapplication cedar(Calocedrus macrolepisvar.formosana)fromthe siteofeachseedling. nursery of Chiayi Forest District Office of Taiwan Forestry BureauinsouthwesternTaiwan(23°28’N,120°26’E) Cambium activity measurement weretransplantedintoagreenhouseattheDepartment Thecambiumactivitywasmeasuredbycounting ofForestryandResourceConservation,NationalTaiwan thenumbersofvascularcambiumanddifferentiating University,Taipei (25°00’ N, 121°27’ E) on 5 May xylemcellsinasingleradialprofile.Freshlycutdiscs 2005.Aftera1-monthacclimation,theaverageheight (1cminthickness)weredividedintotwohalvesand ofseedlingswas106.9±13.3(±SE)cmandaverage immediatelyfixedin1%glutaraldehyde(GA)in0.1% diameterofthetrunksat20cmheightwas7.45±0.96(± sodiumphosphatebuffer(pH7.0).Freehandsections SE)mm. fromeachdiscweredouble-stainedwith1%safraninO ina50%ethanolsolutionand1%fastgreenina95% Seedling treatments ethanolsolution.Underalightmicroscope(LeicaDiaplan Seedlingsweresubdividedintofourgroups.Group1 Microscope),cambiumcellswerecounted.Thecounted seedlingswereplantedverticallyasthecontrol(Figure cellsincludedundifferentiatedparenchymatouscellsand 1A).Group2seedlingswereplantedverticallyand differentiatedxylemcellsbetweenthematurexylemand markedat25cmabovethebasalpartforcambiumcell phloem.Thecytoplasmofmaturetracheidshasalready investigation(Figure1B).ForIAAtreatment,theouter beendegraded. TSAI et al. — Compression wood formation in Taiwan incense cedar 165 Cambium cell differentiation Wood structure observations To observe cell differentiation, freshly cut 1 ×1 × ThemajorityofsecondaryxylemofTaiwanincense 2-mm cubes were fixed overnight in 2.5% GA in 0.1% cedarwascomposedoftracheidswithafewscattered sodium phosphate buffer (pH 7.0, 4°C).After washing solitaryaxialparenchymacells(Figure2A).Thecellular with phosphate buffer, the cubes were post-fixed in 1% arrangementwasplainandregular.Therayparenchyma osmium tetraoxide in 0.1% sodium phosphatebuffer wasonetosevencellshigh,andwashomogeneous (pH 7.0, 4°C).The double-fixed samples were then anduniseriate(Figure2B).Rayparenchymacellswere dehydrated by a serial acetone treatment and embedded occasionallyfilledwithstarchgrains,whichappeared inSpurr’sresinaspreviouslydescribed(Spurr,1969).An blackwithiodinestaining(datanotshown).Resinducts ultramicrotome(UltracutE)wasusedtomakeaseriesof wereabsentfromthesecondaryxylembutwerepresentin 1-μm sections; Stevenel’s blue was then used to stain the thebark.ThedormantcambiumzoneofTaiwanincense cells(DelCerroetal.,1980).Cellwallsofmaturecells
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages8 Page
-
File Size-