Nonequilibrium QFT Approach to Leptogenesis

Nonequilibrium QFT Approach to Leptogenesis

Nonequilibrium QFT approach to leptogenesis Tibor Frossard MPIK-Heidelberg In collaboration with M. Garny, A. Hohenegger, A. Kartavtsev, and D. Mitrouskas Tibor Frossard (MPIK-HD) Nonequilibrium QFT in leptogenesis 27.09.2012 1 / 11 1 B + L violating sphalerons + L violating Majorana mass 2 Yukawa coupling hαi 3 Expanding Universe + Ni decay Leptogenesis SM + 3 heavy Majorana neutrinos: Dynamical generation of the 1 L =LSM + N¯i i@= − Mi Ni baryon asymmetry: 2 ¯ ~ y ¯ ~y ! 3 Sakharov conditions: − hαi`αφPRNi − hiαNiφ PL`α 1 Baryon number violation 2 C and CP violation 3 Out of equilibrium dynamics ) Need physic beyond the SM Leptogenesis Baryogenesis via Leptogenesis Matter-antimatter asymmetry in the Universe CMB + BBN ) n − n ¯ η = B B = (6:2 ± 0:2) 10−10 nγ Tibor Frossard (MPIK-HD) Nonequilibrium QFT in leptogenesis 27.09.2012 2 / 11 1 B + L violating sphalerons + L violating Majorana mass 2 Yukawa coupling hαi 3 Expanding Universe + Ni decay Leptogenesis SM + 3 heavy Majorana neutrinos: 1 ¯ = L =LSM + 2 Ni i@ − Mi Ni ¯ ~ y ¯ ~y − hαi`αφPRNi − hiαNiφ PL`α ) Need physic beyond the SM Leptogenesis Baryogenesis via Leptogenesis Matter-antimatter asymmetry in the Universe CMB + BBN ) n − n ¯ η = B B = (6:2 ± 0:2) 10−10 nγ Dynamical generation of the baryon asymmetry: ! 3 Sakharov conditions: 1 Baryon number violation 2 C and CP violation 3 Out of equilibrium dynamics Tibor Frossard (MPIK-HD) Nonequilibrium QFT in leptogenesis 27.09.2012 2 / 11 1 B + L violating sphalerons + L violating Majorana mass 2 Yukawa coupling hαi 3 Expanding Universe + Ni decay Leptogenesis Baryogenesis via Leptogenesis Matter-antimatter asymmetry in the Universe CMB + BBN ) n − n ¯ η = B B = (6:2 ± 0:2) 10−10 Leptogenesis nγ SM + 3 heavy Majorana neutrinos: Dynamical generation of the 1 L =LSM + N¯i i@= − Mi Ni baryon asymmetry: 2 ¯ ~ y ¯ ~y ! 3 Sakharov conditions: − hαi`αφPRNi − hiαNiφ PL`α 1 Baryon number violation 2 C and CP violation 3 Out of equilibrium dynamics ) Need physic beyond the SM Tibor Frossard (MPIK-HD) Nonequilibrium QFT in leptogenesis 27.09.2012 2 / 11 2 Yukawa coupling hαi 3 Expanding Universe + Ni decay Leptogenesis Baryogenesis via Leptogenesis Matter-antimatter asymmetry in the Universe CMB + BBN ) n − n ¯ η = B B = (6:2 ± 0:2) 10−10 Leptogenesis nγ SM + 3 heavy Majorana neutrinos: Dynamical generation of the 1 L =LSM + N¯i i@= − Mi Ni baryon asymmetry: 2 ¯ ~ y ¯ ~y ! 3 Sakharov conditions: − hαi`αφPRNi − hiαNiφ PL`α 1 Baryon number violation 1 B + L violating sphalerons+ 2 C and CP violation L violating Majorana mass 3 Out of equilibrium dynamics ) Need physic beyond the SM Tibor Frossard (MPIK-HD) Nonequilibrium QFT in leptogenesis 27.09.2012 2 / 11 3 Expanding Universe + Ni decay Leptogenesis Baryogenesis via Leptogenesis Matter-antimatter asymmetry in the Universe CMB + BBN ) n − n ¯ η = B B = (6:2 ± 0:2) 10−10 Leptogenesis nγ SM + 3 heavy Majorana neutrinos: Dynamical generation of the 1 L =LSM + N¯i i@= − Mi Ni baryon asymmetry: 2 ¯ ~ y ¯ ~y ! 3 Sakharov conditions: − hαi`αφPRNi − hiαNiφ PL`α 1 Baryon number violation 1 B + L violating sphalerons + 2 C and CP violation L violating Majorana mass 3 Out of equilibrium dynamics 2 Yukawa coupling hαi ) Need physic beyond the SM Tibor Frossard (MPIK-HD) Nonequilibrium QFT in leptogenesis 27.09.2012 2 / 11 Leptogenesis Baryogenesis via Leptogenesis Matter-antimatter asymmetry in the Universe CMB + BBN ) n − n ¯ η = B B = (6:2 ± 0:2) 10−10 Leptogenesis nγ SM + 3 heavy Majorana neutrinos: Dynamical generation of the 1 L =LSM + N¯i i@= − Mi Ni baryon asymmetry: 2 ¯ ~ y ¯ ~y ! 3 Sakharov conditions: − hαi`αφPRNi − hiαNiφ PL`α 1 Baryon number violation 1 B + L violating sphalerons + 2 C and CP violation L violating Majorana mass 3 Out of equilibrium dynamics 2 Yukawa coupling hαi ) Need physic beyond the 3 Expanding Universe + N SM i decay Tibor Frossard (MPIK-HD) Nonequilibrium QFT in leptogenesis 27.09.2012 2 / 11 ) into the Boltzmann equation for the lepton number! Leptogenesis Canonical approach Generation of an asymmetry: production washout 4 2 Ni (inverse)decay O h O h ∆L = 2 scattering O h6 O h4 2 4 2 2 top scattering O λt h O λt h gauge scattering O g2h4 O g2h2 Tibor Frossard (MPIK-HD) Nonequilibrium QFT in leptogenesis 27.09.2012 3 / 11 ) into the Boltzmann equation for the lepton number! Leptogenesis Canonical approach Generation of an asymmetry: production washout 4 2 Ni (inverse)decay O h O h ∆L = 2 scattering O h6 O h4 2 4 2 2 top scattering O λt h O λt h gauge scattering O g2h4 O g2h2 Tibor Frossard (MPIK-HD) Nonequilibrium QFT in leptogenesis 27.09.2012 3 / 11 Leptogenesis Canonical approach Generation of an asymmetry: production washout 4 2 Ni (inverse)decay O h O h ∆L = 2 scattering O h6 O h4 2 4 2 2 top scattering O λt h O λt h gauge scattering O g2h4 O g2h2 ) into the Boltzmann equation for the lepton number! Tibor Frossard (MPIK-HD) Nonequilibrium QFT in leptogenesis 27.09.2012 3 / 11 Vacuum amplitudes in the hot Universe ! thermal masses? ! thermal decay width? ! thermal amplitudes? Nonequilibrium Quantum Field Theory approach is needed!! Leptogenesis Canonical approach This approach suffers from several problems: Double counting problem ! can be solved if one neglects the quantum statistical factors ) Real intermediate state substraction Tibor Frossard (MPIK-HD) Nonequilibrium QFT in leptogenesis 27.09.2012 4 / 11 Nonequilibrium Quantum Field Theory approach is needed!! Leptogenesis Canonical approach This approach suffers from several problems: Double counting problem ! can be solved if one neglects the quantum statistical factors ) Real intermediate state substraction Vacuum amplitudes in the hot Universe ! thermal masses? ! thermal decay width? ! thermal amplitudes? Tibor Frossard (MPIK-HD) Nonequilibrium QFT in leptogenesis 27.09.2012 4 / 11 Leptogenesis Canonical approach This approach suffers from several problems: Double counting problem ! can be solved if one neglects the quantum statistical factors ) Real intermediate state substraction Vacuum amplitudes in the hot Universe ! thermal masses? ! thermal decay width? ! thermal amplitudes? Nonequilibrium Quantum Field Theory approach is needed!! Tibor Frossard (MPIK-HD) Nonequilibrium QFT in leptogenesis 27.09.2012 4 / 11 Schwinger-Dyson equation ^−1 ^−1 ^ αβ δiΓ2 S (x; y) = S0 (x; y) − Σ(x; y) ; Σij (x; y) = − βα δSji (y; x) 2PI effective Γ = = 2 action ^ ^ i 0 0 ^ ! doubling of the d.o.f.: S(x; y) = SF (x; y) − 2 signC(x − y ) Sρ(x; y) | {z } | {z } statistical spectral Nonequilibrium QFT approach Basics of nonequilibrium QFT Right-handed neutrinos propagator on CTP: αβ α ¯ β Sij (x; y) =< TCNi (x)Nj (y) > Tibor Frossard (MPIK-HD) Nonequilibrium QFT in leptogenesis 27.09.2012 5 / 11 ^ ^ i 0 0 ^ ! doubling of the d.o.f.: S(x; y) = SF (x; y) − 2 signC(x − y ) Sρ(x; y) | {z } | {z } statistical spectral Nonequilibrium QFT approach Basics of nonequilibrium QFT Right-handed neutrinos propagator on CTP: αβ α ¯ β Sij (x; y) =< TCNi (x)Nj (y) > Schwinger-Dyson equation ^−1 ^−1 ^ αβ δiΓ2 S (x; y) = S0 (x; y) − Σ(x; y) ; Σij (x; y) = − βα δSji (y; x) 2PI effective Γ = = 2 action Tibor Frossard (MPIK-HD) Nonequilibrium QFT in leptogenesis 27.09.2012 5 / 11 Nonequilibrium QFT approach Basics of nonequilibrium QFT Right-handed neutrinos propagator on CTP: αβ α ¯ β Sij (x; y) =< TCNi (x)Nj (y) > Schwinger-Dyson equation ^−1 ^−1 ^ αβ δiΓ2 S (x; y) = S0 (x; y) − Σ(x; y) ; Σij (x; y) = − βα δSji (y; x) 2PI effective Γ = = 2 action ^ ^ i 0 0 ^ ! doubling of the d.o.f.: S(x; y) = SF (x; y) − 2 signC(x − y ) Sρ(x; y) | {z } | {z } statistical spectral Tibor Frossard (MPIK-HD) Nonequilibrium QFT in leptogenesis 27.09.2012 5 / 11 Quantum Boltzmann equation Z 4 d d p h p p i (n`(t)−n`¯(t)) = gw 4 tr Σ`<(t; p)(1 − f` ) + Σ`>(t; p)f` S`ρ(t; p) dt (2π) | {z } | {z } gain term loss term Σ` = Nonequilibrium QFT approach Quantum Boltzmann equation Wigner transform $ Fourrier transform wrt relative coordinates Gradient expansion $ Expansion in slow relative to fast time-scales (H=T ) Quasiparticle approximation $ Narrow width approximation Kadanoff-Baym ansatz $ One-particle distribution function Tibor Frossard (MPIK-HD) Nonequilibrium QFT in leptogenesis 27.09.2012 6 / 11 Nonequilibrium QFT approach Quantum Boltzmann equation Wigner transform $ Fourrier transform wrt relative coordinates Gradient expansion $ Expansion in slow relative to fast time-scales (H=T ) Quasiparticle approximation $ Narrow width approximation Kadanoff-Baym ansatz $ One-particle distribution function Quantum Boltzmann equation Z 4 d d p h p p i (n`(t)−n`¯(t)) = gw 4 tr Σ`<(t; p)(1 − f` ) + Σ`>(t; p)f` S`ρ(t; p) dt (2π) | {z } | {z } gain term loss term Σ` = Tibor Frossard (MPIK-HD) Nonequilibrium QFT in leptogenesis 27.09.2012 6 / 11 - neglect the off-diagonal components The amplitudes incorporate thermal masses and thermal widths but, ! Self-energy contribution to the decay rate is missing! ! s × s and t × t channels of the scattering processes are missing! ) need to go beyond the free propagator approximation! Nonequilibrium QFT approach Lepton asymmetry Free (thermal-) propagators into the lepton self-energy: 1 p 0 2 2 1 k 0 2 2 S`F = ( 2 − f` )PLp=sign(p )(2π)δ(p − m` ) ∆φF = ( 2 + fφ )sgn(k )(2π)δ(k − mφ) ij ij 1 q 0 2 2 S = δ ( − f )(q + Mi)sign(q )(2π)δ(q − M ) NF 2 Ni = i Tibor Frossard (MPIK-HD) Nonequilibrium QFT in leptogenesis 27.09.2012 7 / 11 - neglect the off-diagonal components The amplitudes incorporate thermal masses and thermal widths but, ! Self-energy contribution to the decay rate is missing! ! s × s and

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    38 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us