Bjørnar Blækkan Sæther Stian Joachimsen Banking Regulations on Credit Risk and Credit Value Adjustment Exploring Counterparty Credit Risk in Interest Rate Swaps Master’s thesis Master’s Master’s thesis in Finance and Investment Supervisor: Florentina Paraschiv NTNU May 2019 NTNU Business School NTNU Business Faculty of Economics and Management of Economics Faculty Norwegian University of Science and Technology of Science University Norwegian Bjørnar Blækkan Sæther Stian Joachimsen Banking Regulations on Credit Risk and Credit Value Adjustment Exploring Counterparty Credit Risk in Interest Rate Swaps Master’s thesis in Finance and Investment Supervisor: Florentina Paraschiv May 2019 Norwegian University of Science and Technology Faculty of Economics and Management NTNU Business School Preface This thesis concludes our M.Sc. in Economics and Business Administration at the Norwegian University of Science and Technology (NTNU). It is a master thesis in the field of Finance and Investment. The work on this thesis has been very challenging, but it has also provided us with great insight into an elaborate and challenging subject that influences the banking sector. We would like to thank our supervisor, Professor Florentina Paraschiv, at the Department of Economics for guidance and support throughout the semester. We would also like to thank an unnamed person in a Norwegian savings bank who provided us with their data and knowledge on the subject. The authors take full responsibility for the content of this thesis. Trondheim, May 23, 2019 __________________________ __________________________ Bjørnar B. Sæther Stian Joachimsen ii Abstract In this thesis, we consider the credit value adjustment (CVA) calculations for interest rate swaps together with the changes made through Basel regulations from the Basel Committee on Banking Supervision (BCBS). We review the changes made from the first implementation of the 1988 Basel Accord until today as well as the changes in methods used for addressing credit risk and counterparty credit risk during this period. Our problem statement is: How can banks manage counterparty credit risk under the Basel framework, and how could the CVA risk capital charge be calculated for a Norwegian savings bank with different counterparty risk levels and methods? We compute the CVA for a portfolio of interest rate swaps with data provided from a Norwegian savings bank towards a Nordic counterparty with both an internal model method (IMM) and by using the simpler regulatory BA-CVA method from BCBS, before comparing the results. Our IMM is simulated by performing a Monte-Carlo simulation using the Hull- White framework, assuming that no wrong-way risk exists. We model several CVA risk capital charges for the IMM with different probabilities of default, both with real market data computed from credit default swap (CDS) spreads and fictive examples. Our main findings indicate a lower CVA risk capital charge when computing with the IMM approach compared to the BA-CVA approach from BCBS. The results also show how the bank is exposed to their counterparty when changes happen in the counterparty CDS spreads. Should an unwanted situation happen to the counterparty, placing them under financial distress and resulting in higher CDS spreads, the savings bank will need to set aside more capital in order to meet the regulatory demands for counterparty credit risk exposures. iii Sammendrag I denne oppgaven ser vi på Credit Value Adjustment (CVA) beregninger for rentebytteavtaler sammen med endringene som er gjort gjennom Basel reguleringer fra Basel Committee on Banking Supervision (BCBS). Vi gjennomgår endringene fra den første Basel Akkorden i 1988 fram til i dag og ser på endringene i metodene som benyttes for å behandle kredittrisiko og motpartsrisiko under denne perioden. Vår problemstilling er: Hvordan kan banker mitigere motpartsrisiko under Basel rammeverket, og hvordan kan CVA risikokapitalkravet beregnes for en norsk sparebank med forskjellige motpartsrisikonivåer og metoder? Vi beregner CVA for en portefølje av rentebytteavtaler med data som er mottatt av en norsk sparebank mot en av deres nordiske motparter via både en intern modell metode (IMM) og ved å benytte den enklere regulatoriske BA-CVA metoden fra BCBS, før vi sammenligner resultatene. Vår IMM er simulert ved å benytte Monte-Carlo simuleringer og et Hull-White rammeverk, hvor vi antar ingen wrong-way risk eksisterer. Vi modellerer flere CVA risikokapitalkrav for IMM med forskjellige sannsynligheter for mislighold, både med ekte markedsdata beregnet fra kredittapsforsikringers (credit default swap) spread og med fiktive eksempler. Hovedfunnene våre indikerer et lavere CVA risikokapitalkrav ved beregning med vår IMM sammenlignet med BA-CVA metoden fra BCBS. Resultatene viser også hvordan banken er utsatt til deres motpart når endringer skjer i motpartens CDS spread. Skulle en uønsket situasjon oppstå for motparten, som plasserer dem under en økonomisk krisesituasjon og resulterer i høyere CDS spreads, vil sparebanken måtte sette av mer kapital for å møte de regulatoriske kravene for motpartsrisiko eksponeringer. iv Table of Contents 1 INTRODUCTION ........................................................................................................................................ 1 2 FINANCIAL MARKETS ............................................................................................................................ 2 2.1 THE BANKING SYSTEM .......................................................................................................................... 2 2.2 MARKETS ............................................................................................................................................... 2 2.3 CREDIT RATINGS ................................................................................................................................... 3 2.4 CREDIT RISK AND COUNTERPARTY CREDIT RISK .................................................................................. 4 2.5 CREDIT RISK MITIGATION TECHNIQUES ................................................................................................ 4 2.5.1 Margin .............................................................................................................................................. 5 2.5.2 Collateralized transactions .............................................................................................................. 5 2.5.3 ISDA Master Agreements and the Credit Support Annex ................................................................ 5 2.5.4 Netting .............................................................................................................................................. 6 2.5.5 Clearing Houses and Central Counterparties .................................................................................. 6 3 THEORETICAL BACKGROUND ............................................................................................................ 8 3.1 RISK-FREE RATES AND DISCOUNTING ................................................................................................... 8 3.1.1 Treasury Rates .................................................................................................................................. 8 3.1.2 LIBOR/Swap Rates ........................................................................................................................... 8 3.1.3 The OIS rate as the risk-free rate for discounting ............................................................................ 9 3.1.4 Stochastic Discount Factor ............................................................................................................ 10 3.2 INTRODUCTION TO INTEREST RATES SWAPS AND DERIVATIVES ......................................................... 10 3.2.1 Zero-Coupon Bonds ....................................................................................................................... 10 3.2.2 Forward Rate Agreements .............................................................................................................. 11 3.2.3 Interest Rate Swaps ........................................................................................................................ 13 3.2.4 Credit Default Swaps ...................................................................................................................... 17 3.3 MATHEMATICAL DEFINITIONS ............................................................................................................. 22 3.3.1 Exposure ......................................................................................................................................... 22 3.3.2 Loss Given Default ......................................................................................................................... 22 3.3.3 Probability of Default ..................................................................................................................... 22 3.3.4 Exposure at Default ........................................................................................................................ 23 3.4 EVOLUTION OF CREDIT RISK THEORY AND CREDIT RISK MODELS ..................................................... 23 3.4.1 Credit Risk Evaluation Models ....................................................................................................... 24 3.4.2 The Factors Influencing Credit Risk .............................................................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages95 Page
-
File Size-