A Computational Approach to the Ordinal Numbers Documents Ordcalc 0.3.2

A Computational Approach to the Ordinal Numbers Documents Ordcalc 0.3.2

A Computational Approach to the Ordinal Numbers Documents ordCalc 0.3.2 Paul Budnik Mountain Math Software [email protected] Copyright c 2009 - 2012 Mountain Math Software All Rights Reserved Licensed for use and distribution under GNU General Public License Version 2. Source code and documentation can be downloaded at www.mtnmath.com/ord and sourceforge.net/projects/ord. Contents List of Figures 5 List of Tables 5 1 Introduction 7 1.1 Intended audience . 8 1.2 The Ordinals . 8 2 Ordinal notations 9 2.1 Ordinal functions and fixed points . 10 2.2 Beyond the recursive ordinals . 11 2.3 Uncountable ordinals . 12 3 Generalizing Kleene's O 13 3.1 Objective mathematics . 13 3.1.1 Avoiding the ambiguity of the uncountable . 14 CK 3.1.2 Objective mathematics beyond !1 ................... 15 3.2 Kleene's O ..................................... 15 3.3 P an extension of Kleene's O .......................... 16 3.3.1 P conventions . 17 3.3.2 P definition . 17 3.3.3 Summary of rules for P ......................... 19 1 3.4 Q an extension of O and P ........................... 20 3.4.1 Hierarchies of ordinal notations . 20 3.4.2 Q syntax . 21 3.4.3 Q conventions . 22 3.4.4 Ranking labels (lb) in Q ......................... 24 3.4.5 Q definition . 25 3.4.6 Summary of rules for Q ......................... 27 3.5 Conclusions . 28 4 Ordinal Calculator Overview 28 4.1 Program structure and interactive mode . 30 4.1.1 Program structure . 30 4.1.2 Interactive mode . 31 4.2 Recursive ordinal notations and the Cantor normal form . 31 4.3 The Veblen hierarchy . 32 4.3.1 Two parameter Veblen function . 32 4.3.2 Finite parameter Veblen functions . 33 4.3.3 Transfinite Veblen functions . 36 4.4 Limitations of ordinal notations . 36 4.5 Notations for the Church-Kleene ordinal and beyond . 38 4.5.1 Notations for countable admissible ordinals . 39 4.5.2 Admissible ordinals and projection . 41 4.6 Ordinal projection with nested embedding . 44 4.7 Mathematical truth . 47 4.7.1 Properties of the integers . 54 4.7.2 The reals . 55 4.7.3 Expanding mathematics . 56 5 Program structure 57 5.1 virtual functions and subclasses . 57 5.2 Ordinal normal forms . 58 5.3 Memory management . 58 6 Ordinal base class 58 6.1 normalForm and texNormalForm member functions . 59 6.2 compare member function . 60 6.3 limitElement member function . 60 6.4 Operators . 60 6.4.1 Addition . 62 6.4.2 multiplication . 62 6.4.3 exponentiation . 63 2 7 The Veblen hierarchy 63 7.1 The delta operator . 65 7.2 A finite function hierarchy . 67 7.3 The finite function normal form . 68 7.4 limitElement for finite functions . 68 7.5 An iterative functional hierarchy . 70 8 FiniteFuncOrdinal class 70 8.1 compare member function . 71 8.2 limitElement member function . 74 8.3 fixedPoint member function . 77 8.4 operators . 77 8.4.1 multiplication . 77 8.4.2 exponentiation . 80 8.5 limitOrd member function . 82 9 IterFuncOrdinal class 82 9.1 compare member function . 83 9.2 limitElement member function . 84 9.3 fixedPoint member function . 87 9.4 operators . 87 10 Countable admissible ordinals 90 10.1 Generalizing recursive ordinal notations . 90 10.2 Notations for Admissible level ordinals . 91 10.3 Typed parameters and limitOrd ........................ 92 10.4 limitType of admissible level notations . 95 10.5 Ordinal collapsing . 95 10.6 Displaying Ordinals in Ψ format . 99 10.7 Admissible level ordinal collapsing . 99 11 AdmisLevOrdinal class 102 11.1 compare member function . 102 11.2 limitElement member function . 107 11.3 isValidLimitOrdParam member function . 119 11.4 limitInfo, limitType and embedType member functions . 119 11.5 maxLimitType member function . 119 11.6 limitOrd member function . 119 11.7 fixedPoint member function . 123 11.8 Operators . 125 12 Nested Embedding 125 12.1 Filling the Gaps . 126 3 13 NestedEmbedOrdinal class 133 13.1 compare member function . 133 13.2 class NestedEmbeddings ............................ 136 13.2.1 compare member function . 136 13.2.2 nextLeast member function . 136 13.3 limitElement member function . 136 13.4 isValidLimitOrdParam and maxLimitType member functions . 147 13.5 limitInfo, limitType and embedType member functions . 147 13.6 limitOrd member function . 147 13.7 fixedPoint member function . 147 14 Philosophical Issues 147 A Formalizing objective mathematics 151 A.1 Introduction . 151 A.1.1 The mathematics of recursive processes . 151 A.1.2 The uncountable . 151 A.1.3 Expanding the foundations of mathematics . 152 A.2 Background . 152 A.2.1 The ordinal hierarchy . 153 A.3 The true power set . 153 A.4 Mathematical Objects . 154 A.4.1 Properties of properties . 155 A.4.2 G¨odeland mathematical creativity . 155 A.4.3 Cantor's incompleteness proof . 155 A.5 Axioms of ZFC . 155 A.5.1 Axiom of extensionality . 156 A.5.2 Axiom of the empty set . 156 A.5.3 Axiom of unordered pairs . 156 A.5.4 Axiom of union . 156 A.5.5 Axiom of infinity . 157 A.5.6 Axiom scheme of replacement . 157 A.5.7 Power set axiom . 158 A.5.8 Axiom of Choice . 158 A.6 The axioms of ZFC summary . 158 A.7 The Objective Parts of ZF . 159 A.8 Formalization of the Objective Parts of ZF . 160 A.8.1 Axioms unchanged from ZF . 160 A.8.2 Objective axiom of replacement . 160 A.9 An Objective Interpretation of ZFC . 161 A.10 A Creative Philosophy of Mathematics . 161 4 B Command line interface 163 B.1 Introduction . 163 B.2 Command line.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    190 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us