J. Geom. Phys. 91 (2015), 146–162. a Quaternion-Kähler Manifold Is a 4N

J. Geom. Phys. 91 (2015), 146–162. a Quaternion-Kähler Manifold Is a 4N

Citations From References: 0 From Reviews: 0 MR3327056 (Review) 53C26 Gambioli, A. [Gambioli, Andrea] (3-DAWS-M); Nagatomo, Y. [Nagatomo, Yasuyuki] (J-MEIJ2); Salamon, S. [Salamon, Simon M.] (4-LNDKC) Special geometries associated to quaternion-K¨ahler8-manifolds. (English summary) J. Geom. Phys. 91 (2015), 146{162. A quaternion-K¨ahlermanifold is a 4n-dimensional smooth manifold (n ≥ 2) endowed with a Riemannian metric g with holonomy contained in the subgroup Sp(n)Sp(1) of SO(4n). In this interesting paper under review, the authors develop a calculus of differential forms on a quaternion-K¨ahlermanifold admitting an isometric circle action and establish the existence of direct links between quaternion-K¨ahlergeometry in dimension eight, half-flat geometry in dimension six, and G2 geometry in dimension seven. Gabriel Eduard V^ılcu References 1. B. Acharya, E. Witten, Chiral fermions from manifolds of G2 holonomy, hep- th/0106034. 2. A. Swann, Hyper-K¨ahlerand quaternionic K¨ahlergeometry, Math. Ann. 289 (1991) 421{450. MR1096180 3. R. Bryant, S. Salamon, On the construction of some complete metrics with excep- tional holonomy, Duke Math. J. 58 (1989) 829{850. MR1016448 4. K. Galicki, B. Lawson, Quaternionic reduction and quaternionic orbifolds, Math. Ann. 282 (1988) 1{21. MR0960830 5. N. Hitchin, A. Karlhede, U. Lindstr¨om,M. Roˇcek, Hyperk¨ahlermetrics and super- symmetry, Comm. Math. Phys. 108 (1987) 535{589. MR0877637 6. S. Salamon, Quaternionic K¨ahler manifolds, Invent. Math. 67 (1982) 143{171. MR0664330 7. F. Battaglia, Circle actions and Morse theory on quaternion-K¨ahler manifolds, J. Lond. Math. Soc. 59 (1999) 345{358. MR1688506 8. M. Atiyah, E. Witten, M-theory dynamics on a manifold of G2 holonomy, Adv. Theor. Math. Phys. 6 (2002) 1{106. MR1992874 9. M. Atiyah, J. Berndt, Projective planes, Severi varieties and spheres, in: Surveys in Differential Geometry, Int. Press, Somerville, 2003, pp. 1{27. MR2039984 10. V. Arnold, Relatives of the quotient of the complex projective plane by complex conjugation, Proc. Steklov Inst. Math. 224 (1999) 46{56. MR1721354 11. M. Pontecorvo, On twistor spaces of anti-self-dual Hermitian surfaces, Trans. Amer. Math. Soc. 331 (1992) 653{661. MR1050087 12. A. Haydys, HyperK¨ahler and quaternionic K¨ahlermanifolds with S1-symmetries, J. Geom. Phys. 58 (2008) 293{306. MR2394039 13. N.J. Hitchin, On the hyperk¨ahler/quaternionk¨ahlercorrespondence, Comm. Math. Phys. 324 (2013) 77{106. MR3116317 14. O. Macia, A. Swann, Twist geometry of the c-map, arXiv:1404.0785. cf. MR3324146 15. D. Conti, T.B. Madsen, Harmonic structures and intrinsic torsion, arXiv:1308.4083. 16. M.F. Atiyah, N.J. Hitchin, I.M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. R. Soc. Lond. Ser. A 362 (1978) 425{461. MR0506229 17. J. Eells, S. Salamon, Twistorial construction of harmonic maps of surfaces into four-manifolds, Ann. Sc. Norm. Super. Pisa 12 (1985) 589{640. MR0848842 18. S. Salamon, Harmonic and holomorphic maps, in: Geometry Seminar Luigi Bianchi, in: Lect. Notes Math., vol. 1164, Springer, 1985, pp. 161{224. MR0829230 19. M. Mamone Capria, S.M. Salamon, Yang{Mills fields on quaternionic spaces, Non- linearity 1 (1988) 517{530. MR0967469 20. K. Galicki, Y.S. Poon, Duality and Yang{Mills fields on quaternionic K¨ahlermani- folds, J. Math. Phys. 32 (1991) 1263{1268. MR1103479 21. Y. Nagatomo, T. Nitta, Vanishing theorem for quaternionic complexes, Bull. Lond. Math. Soc. 29 (1997) 359{366. MR1435574 22. J.A. Wolf, Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. Mech. 14 (1965) 1033{1047. See also Acta Math. 152 (1984) 141{ 142. MR0185554 23. A. Moroianu, U. Semmelmann, Clifford structures on Riemannian manifolds, Adv. Math. 228 (2011) 940{967. MR2822214 24. V.Y. Kraines, Topology of quaternionic manifolds, Trans. Amer. Math. Soc. 122 (1966) 357{367. MR0192513 25. R. Bryant, R. Harvey, Submanifolds in hyper-K¨ahlergeometry, J. Amer. Math. Soc. 2 (1989) 1{31. MR0953169 26. S. Salamon, Riemannian Geometry and Holonomy Groups, in: Pitman Research Notes in Mathematics, vol. 201, Longman, 1989. MR1004008 27. A. Swann, Some remarks on quaternion-Hermitian manifolds, Arch. Math. (Brno) 33 (1997) 349{354. MR1601349 28. D.V. Alekseevsky, Riemannian spaces with unusual holonomy groups, Funktsional. Anal. i Prilozhen. 2 (1968) 1{10. MR0231313 29. D.V. Alekseevsky, S. Marchiafava, M. Pontecorvo, Compatible almost complex structures on quaternion-K¨ahlermanifolds, Ann. Global Anal. Geom. 16 (1998) 419{444. MR1648844 30. B. Kostant, Holonomy and the lie algebra of infinitesimal motions of a Riemannian manifold, Trans. Amer. Math. Soc. 80 (1955) 528{542. MR0084825 31. D. Joyce, The hypercomplex quotient and the quaternionic quotient, Math. Ann. 290 (1991) 323{340. MR1109637 32. A. Gray, L. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. 123 (1980) 35{58. MR0581924 33. M. Atiyah, R. Bott, The moment map and equivariant cohomology, Topology 23 (1984) 1{28. MR0721448 34. K. Galicki, A generalization of the momentum mapping, Comm. Math. Phys. 108 (1987) 117{138. MR0872143 35. S. Salamon, A tour of exceptional geometry, Milan J. Math. 71 (2003) 59{94. MR2120916 36. W. Fulton, J. Harris, Representation Theory: A First Course, in: GTM, vol. 129, Springer, 1991. MR1153249 37. A. Besse, Einstein Manifolds, in: Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 10, Springer-Verlag, 1987. MR0867684 38. F. Battaglia, S1 quotients of quaternion-K¨ahlermanifolds, Proc. Amer. Math. Soc. 124 (1996) 2185{2192. MR1307492 39. R. Miyaoka, The Bryant{Salamon G2-manifolds and hypersurface geometry, math- ph/0605074. 40. A. Gambioli, Eight-dimensional SU(3)-manifolds of cohomogeneity one, Ann. Global Anal. Geom. 34 (2008) 77{100. MR2415180 41. N. Hitchin, Stable forms and special metrics, in: Global Differential Geometry: The Mathematical Legacy of Alfred Gray, in: Contemp. Math., vol. 288, American Math. Soc., 2001, pp. 70{89. MR1871001 42. D. Conti, S. Salamon, Generalized Killing spinors in dimension 5, Trans. Amer. Math. Soc. 359 (2007) 5319{5343. MR2327032 43. V. Apostolov, S. Salamon, K¨ahlerreduction of metrics with holonomy G2, Comm. Math. Phys. 246 (2004) 43{61. MR2044890 44. S.M. Salamon, Almost parallel structures, in: Global Differential Geometry: The Mathematical Legacy of Alfred Gray, in: Contemp. Math., vol. 288, American Math. Soc., 2001, pp. 162{181. MR1871007 45. D. Conti, M. Fern´andez,Nilmanifolds with a calibrated G2-structure, Differential Geom. Appl. 29 (2011) 493{506. MR2811660 46. A. Fino, A. Tomassini, Generalized G2-manifolds and SU(3)-structures, Internat. J. Math. 19 (2008) 1147{1165. MR2466559 47. S. Salamon, Some reduced holonomy in dimensions 7 and 8, in: Workshop on Generalized Geometry and Flux Compactifications, DESY, Hamburg, 2007, http://www.desy.de/uni-th/stringth/ggfl/. Note: This list reflects references listed in the original paper as accurately as possible with no attempt to correct errors. c Copyright American Mathematical Society 2016 Citations From References: 5 From Reviews: 0 MR3132080 (Review) 53C25 53C29 53C44 53D20 Madsen, Thomas Bruun (4-LNDKC); Salamon, Simon [Salamon, Simon M.] (4-LNDKC) Half-flat structures on S3 × S3. (English summary) Ann. Global Anal. Geom. 44 (2013), no. 4, 369{390. A half-flat SU(3)-structure on a 6-dimensional manifold M is defined by a pair consisting of a 3-form and a 4-form which satisfy some compatibility conditions. From a half-flat SU(3)-structure one can reconstruct a metric g with holonomy group G2 via Hitchin flow. In the simplest case when M is a nearly-K¨ahlerspace, the metric g is the conical metric associated with M. The authors describe left-invariant half-flat SU(3)-structures on the Lie group S3 × S3 using the representation theory of the group SO(4) and matrix algebra. In particular, it is proven that on this group there exists unique left-invariant nearly-K¨ahlerstructure. The authors give a description of the moduli space of left-invariant half-flat SU(3)- structures in terms of matrix algebra. It is proven that essentially the moduli space is a finite-dimensional symplectic quotient. The matrix algebra is used also to simplify and interpret the Hitchin flow equations for the associated cohomogeneity one Ricci-flat metrics with holonomy G2. In the final part of the paper, the authors present results of a numerical study of Hitchin's evolution equations for S3 ×S3. They recover metrics that behave asymptotically locally conically. Dmitri˘ıVladimir Alekseevsky References 1. Apostolov, V., Salamon, S.: K¨ahlerreduction of metrics with holonomy G2. Comm. Math. Phys. 246(1), 43{61 (2004) MR2044890 2. Atiyah, M., Maldacena, J., Vafa, C.: An M-theory flop as a large N duality. Strings, branes, and M-theory. J. Math. Phys. 42(7), 3209{3220 (2001) MR1840340 3. Bar, C.: Real Killing spinors and holonomy. Comm. Math. Phys. 154(3), 509{521 (1993) MR1224089 4. Bedulli, L., Vezzoni, L,: The Ricci tensor of SU(3)-manifolds. J. Geom. Phys. 57(4), 1125{1146 (2007) MR2287296 5. Brandhuber, A.: G2 holonomy spaces; from invariant three-forms. Nuclear Phys. B 629(1{3), 393{416 (2002) MR1903163 6. Brandhuber, A., Gomis, J., Gubser, S., Gukov, S.: Gauge theory at large N and new G2 holonomy metrics. Nuclear Phys. B 611(1{3), 179{204 (2001) MR1857379 7. Bryant, R.: Non-embedding and non-extension results in special holonomy. The many facets of geometry. Oxford Cniversity Press, Oxford (2010) MR2681703 8. Bryant, R., Salamon, S.: On the construction of some complete metrics with excep- tional holonomy. Duke Math. J. 58(3), 829{850(1989) MR1016448 9. Butruille, J.-P.: Espacede twisteurs d'une vari´et´epresque hermitienne de dimension 6. Ann. Inst. Fourier (Grenoble) 57(5), 1451{485 (2007) MR2364136 10. Butruille J.-P.: Homogeneous nearly Kahler manifolds.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    18 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us