Subgroup Complexes and Their Lefschetz Modules

Subgroup Complexes and Their Lefschetz Modules

Outline Terminology History GL3(2) Distinguished Collections Lefschetz Modules Subgroup Complexes and their Lefschetz Modules Silvia Onofrei Department of Mathematics Kansas State University ¡ AA ¡ A ¡ ¡ group theory ¡ p-local structure ¡ ¡ ¡ ¡ complexes of p-subgroups ¡¡ AA ¡ A algebraic topology representation theory mod-p cohomology Lefschetz modules classifying spaces Outline Terminology History GL3(2) Distinguished Collections Lefschetz Modules nonabelian finite simple groups alternating groups (n 5) associated geometries groups of Lie type ≥ Tits buildings 26 sporadic groups sporadic geometries Outline Terminology History GL3(2) Distinguished Collections Lefschetz Modules nonabelian finite simple groups alternating groups (n 5) associated geometries groups of Lie type ≥ Tits buildings 26 sporadic groups sporadic geometries ¡ AA ¡ A ¡ ¡ group theory ¡ p-local structure ¡ ¡ ¡ ¡ complexes of p-subgroups ¡¡ AA ¡ A algebraic topology representation theory mod-p cohomology Lefschetz modules classifying spaces Outline Terminology History GL3(2) Distinguished Collections Lefschetz Modules Outline of the Talk 1 Terminology and Notation 2 Background, History and Context 3 An Example: GL3(2) 4 Distinguished Collections of p-Subgroups 5 Lefschetz Modules for Distinguished Complexes Outline Terminology History GL3(2) Distinguished Collections Lefschetz Modules Terminology and Notation: Groups G is a finite group and p a prime dividing its order H:K denotes an extension of H by K pn denotes an elementary abelian group of order pn Op(G) is the largest normal p-subgroup in G Q a nontrivial p-subgroup of G H G is p-local subgroup if H = N (Q) ≤ G Q is p-radical if Q = Op(NG(Q)) Q is p-centric if Z(Q) Syl (C (Q)) 2 p G Outline Terminology History GL3(2) Distinguished Collections Lefschetz Modules Terminology and Notation: Collections Collection family of subgroups of G C closed under G-conjugation partially ordered by inclusion Subgroup complex = ∆( ) jCj C simplices: σ = (Q0 < Q1 < : : : < Qn), Qi n 2 C isotropy group of σ: Gσ = N (Q ) \i=0 G i fixed point set of Q: ∆( )Q C Let k be a field of characteristic p. The reduced Lefschetz kG-module: dim(∆) X eL (∆( ); k) := ( 1)i C (∆( ); k) G C − i C i=−1 Outline Terminology History GL3(2) Distinguished Collections Lefschetz Modules Standard Collections of p-Subgroups Brown p(G) nontrivial p-subgroups S Quillen p(G) nontrivial elementary abelian p-subgroups A Bouc p(G) nontrivial p-radical subgroups B Quillen, 1978 p(G) p(G) is homotopy equivalence A ⊆ S Le ( p(G) ; k) is virtual projective module G jS j Thevenaz,´ Webb, 1991 p(G) p(G) p(G) areA equivariant⊆ S homotopy⊇ B equivalences Outline Terminology History GL3(2) Distinguished Collections Lefschetz Modules Webb’s Alternating Sum Formula Webb, 1987 assumes: ∆ is a G - simplicial complex ∆Q is contractible, Q any subgroup of order p proves: eLG(∆; Zp) is virtual projective module n P dim(σ) n Hb (G; M)p = ( 1) Hb (Gσ; M)p σ2∆=G − Outline Terminology History GL3(2) Distinguished Collections Lefschetz Modules Sporadic Geometries first 2-local geometries constructed Ronan and Smith, 1980 Ronan and Stroth, 1984 geometries with projective reduced Lefschetz modules Ryba, Smith and Yoshiara, 1990 relate projectivity of the reduced Lefschetz module to p-local structure of the group Smith and Yoshiara, 1997 connections with standard complexes and mod-2 cohomology for the 26 sporadic simple groups Benson and Smith, 2004 Lefschetz characters for several 2-local geometries Grizzard, 2007 Outline Terminology History GL3(2) Distinguished Collections Lefschetz Modules An Example: GL3(2) The Tits building: the extrinsic approach e h 1i Fano Plane 3 V = F2 = e1; e2; e3 e + e e + e h i h 1 2i h 1 3i p = e1 h i L = e1; e2 e + e + e h 1 2 3i h i pL = ( e1 e1; e2 ) h i ⊆ h i e e + e e h 2i h 2 3i h 3i Stabilizers 01 1 0 1 01 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ Gp = @0 A GL = @ A GpL = @0 1 A 0 ∗ ∗ 0∗ 0∗ 1∗ 0 0 1∗ ∗ ∗ Outline Terminology History GL3(2) Distinguished Collections Lefschetz Modules The Tits building for GL3(2): the intrinsic approach The quotient of the action of G on The quotient of the action of G on its building: its Bouc complex: 2 2 p L 2a D8 2b Barycentric subdivision of Tits building = Bouc complex 2 2 Gp = S4 = 2a:S3 = NG(2a) 2 2 GL = S4 = 2b:S3 = NG(2b) 1+2 GpL = D8 = 2 = NG(D8) 2 2 NG(2a < D8) = NG(2b < D8) = D8 Webb’s alternating formula for mod-2 cohomology: ∗ ∗ ∗ ∗ 0 H (GL3(2); F2) H (S4; F2) H (S4; F2) H (D8; F2) 0 ! ! ⊕ ! ! ∗ ∗ ∗ ∗ H (GL3(2); F2) = H (S4; F2) + H (S4; F2) H (D8; F2) − Outline Terminology History GL3(2) Distinguished Collections Lefschetz Modules The reduced Lefschetz module of the Bouc complex = Steinberg module for GL3(2) eL ( ) = H (∆) = St GL3(2) jB2j − 1 − GL3(2) Outline Terminology History GL3(2) Distinguished Collections Lefschetz Modules The reduced Lefschetz module of the Bouc complex = Steinberg module for GL3(2) eL ( ) = H (∆) = St GL3(2) jB2j − 1 − GL3(2) Webb’s alternating formula for mod-2 cohomology: ∗ ∗ ∗ ∗ 0 H (GL3(2); F2) H (S4; F2) H (S4; F2) H (D8; F2) 0 ! ! ⊕ ! ! ∗ ∗ ∗ ∗ H (GL3(2); F2) = H (S4; F2) + H (S4; F2) H (D8; F2) − Outline Terminology History GL3(2) Distinguished Collections Lefschetz Modules A 2-Local Geometry for Co3 G - Conway’s third sporadic simple group Co3 ∆ - subgroup complex with vertex stabilizers given below: Gp = 2:S6(2) ◦P ◦ L ◦M G = 22+63:(S S ) L 3 × 3 4 GM = 2 :L4(2) Theorem (Maginnis and Onofrei, 2004) The 2-local geometry ∆ for Co3 is homotopy equivalent to the complex of distinguished 2-radical subgroups b2(Co3) ; 2-radical subgroups containing 2-central involutionsjB in theirj centers. Outline Terminology History GL3(2) Distinguished Collections Lefschetz Modules Distinguished Collections of p-Subgroups An element of order p in G is p-central if it lies in the center of a Sylow p-subgroup of G. Let p(G) be a collection of p-subgroups of G. C Definition The distinguished collection bp(G) is the collection of C subgroups in p(G) which contain p-central elements in their centers. C Outline Terminology History GL3(2) Distinguished Collections Lefschetz Modules Poset Homotopy Two G-posets are G-homotopy equivalent if they are homotopy equivalent and the homotopies are G-equivariant. A poset is conically contractible if thereC is a poset map f : and an element x suchC!C that x f (x) x for all x . 0 2 C ≤ ≥ 0 2 C THEOREM [Thevenaz´ and Webb,1991]: Let . Assume that for all y the subposet C ⊆ D 2 D ≤y = x x y C f 2 C j ≤ g is Gy -contractible. Then the inclusion is a G-homotopy equivalence. Outline Terminology History GL3(2) Distinguished Collections Lefschetz Modules Proposition (Maginnis and Onofrei, 2005) The inclusion bp(G) , bp(G) is a G-homotopy equivalence. A ! S Proof. Let P bp(G) and let Q bp(G)≤P . 2 S 2 A Pb is the subgroup generated by the p-central elements in Z (P). The subposet bp(G)≤P is contractible via the double inequality: A Q Pb Q Pb ≤ · ≥ The poset map Q Pb Q is N (P)-equivariant. ! · G Outline Terminology History GL3(2) Distinguished Collections Lefschetz Modules Groups of Parabolic Characteristic p G has characteristic p if C (Op(G)) Op(G). G ≤ G has local characteristic p if all p-local subgroups of G have characteristic p. G has parabolic characteristic p if all p-local subgroups which contain a Sylow p-subgroup of G have characteristic p. Theorem (Maginnis and Onofrei, 2007) Let G be a finite group of parabolic characteristic p. Then the collections bp(G); bp(G) and bp(G) are G-homotopy equivalent. B A S Outline Terminology History GL3(2) Distinguished Collections Lefschetz Modules Fixed Point Sets Proposition (Maginnis and Onofrei, 2007 ) Let G be a finite group of parabolic characteristic p. Let z be a p-central element in G and let Z = z . Z h i Then the fixed point set bp(G) is N (Z )-contractible. jB j G Proposition (Maginnis and Onofrei, 2007 ) Let G be a finite group of parabolic characteristic p. Let t be a noncentral element of order p and let T = t . h i Assume that Op(CG(t)) contains a p-central element. T Then the fixed point set bp(G) is N (T )-contractible. jB j G Outline Terminology History GL3(2) Distinguished Collections Lefschetz Modules Theorem (Maginnis and Onofrei, 2007 ) Assume G is a finite group of parabolic characteristic p. Let T = t with t an element of order p of noncentral type in G. h i Let C = CG(t). Suppose that the following hypotheses hold: Op(C) does not contain any p-central elements; The quotient group C = C=Op(C) has parabolic characteristic p. Then there is an NG(T )-equivariant homotopy equivalence T bp(G) bp(C) jB j ' jB j Outline Terminology History GL3(2) Distinguished Collections Lefschetz Modules Sketch of Proof: The proof requires a combination of equivariant homotopy equivalences: T T ≤C ≤C bp(G) bp(G) bp(G) ep(G) jB j ' jS j ' jS >T j ' jS >T j ≤C ≤C ep(G) bp(G) S bp(C) bp(C) ' jS >OC j ' jS >OC j ' j j ' jS j ' jB j Some of the notations used: Sep(G) = p-subgroups of G which contain p-central elements , f g ≤H = Q P < Q H , C>P f 2 C j ≤ g OC = Op(C) and C = CG(t), ≤C S = P bp(G) Z(P) Z (S) = 1; f 2 S >OC \ 6 for S and S such that P S S , T ≤ T ≤ g S Sylp(C) which extends to S Sylp(G).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    27 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us