CONTENTS: 1. INTRODUCTION .................................................................................................................................................... 8 1.1. MOTIVATION ....................................................................................................................................................... 8 1.2. REPORT OBJECTIVES ..........................................................................................................................................11 1.3. WHAT HAS CHANGED IN THE CSP TECHNOLOGY DURING LAST DECADE? ......................................................................11 1.4. OUTLINE OF CSP TECHNOLOGIES ........................................................................................................................ 15 1.4.1.Parabolic Trough Collectors (PTC)...................................................................................................... 20 1.4.2.Some Commercial Parabolic Trough Collector CSP plants under operation ...................................... 22 1.4.3.Central Receiver (or Power Tower) CSP ............................................................................................. 25 1.4.4.Some Commercial Central Receiver CSP plants under operation: ..................................................... 27 1.4.5.Technology comparison ...................................................................................................................... 28 1.5. ACTUAL COSTS AND PERSPECTIVES OF THE CSP TECHNOLOGY ....................................................................... 29 1.6. IS THE CSP TECHNOLOGY SUFFICIENTLY MATURE FOR LEBANON? ..................................................................... 31 1.7. WHICH NEW DRIVING FORCES MAY WE IDENTIFY TO FOSTER THE VIABILITY OF CSP IN LEBANON? ........................... 32 2. TECHNO-ECONOMIC ASSESSMENT OF CSP PLANTS FOR LEBANON. ......................................... 35 2.1. ANALYSIS OBJECTIVES AND CHOICE OF REFERENCE SYSTEMS .......................................................................... 35 2.2. METHODOLOGY ........................................................................................................................................ 36 2.3. PARABOLIC TROUGH REFERENCE SYSTEMS. ................................................................................................. 38 2.3.1.Cost and performance of PT reference systems ................................................................................. 39 2.4. CENTRAL RECEIVER USING MOLTEN SALT AS HEAT TRANSFER FLUID WITH LARGE HEAT STORAGE REFERENCE SYSTEM (GEMASOLAR TYPOLOGY) ............................................................. .........................................................................................46 2.5. CENTRAL RECEIVER USING SATURATED WTEA R STEAM AS HEAT TRANSFER FLUID WITH SMALL HEAT STORAGE REFERENCE SYSTEM (PS20 TYPOLOGY). ....................................................................................................................................................49 2.5.1.Cost and performance of both Central Receiver Reference Systems.................................................. 52 2.6. SUMMARY OF COMPARATIVE RESULTS FOR OTHER LOCALITIES ..................................................... 57 3. REFERENCES AND BIBLIOGRAPHY ................................................................................................................59 APPENDIX : TECHNICAL NOTE: CONSIDERATIONS TO DEFINE A METEOROLOGICAL STATION FOR ASSESSMENT OF SOLAR RESOURCE AND CSP SITTING. .................................................................................... 62 3.1. SITE QUALIFICATION ................................................................................................................................................... 65 3.2. SOLAR IRRADIATION .......................................................................................................................................... 67 3.2.1. Inter annual variability and long-term drifts .................................................................................................. 65 3.2.2. Spatial variability .......................................................................................................................................... 65 3.3. W IND ...................................................................................................................................................................68 3.4. OTHER METEOROLOGICAL CONDITIONS: ......................................................................................................... 69 3.4.1. WATER ......................................................................................................................................................... 69 3.4.2. LAND ............................................................................................................................................................ 69 3.4.3. TRANSPORTATION ..................................................................................................................................... 69 3.4.4. TRANSMISSION LINES .............................................................................................................................. 70 3.4.5. OTHER SITTING CONSIDERATIONS ........................................................................................................ 70 3.5. GROUND MEASUREMENTS OF METEORLOGICAL VARIABLES FOR CSP PLANTS ................................................................ 70 5.5.1. Measuring Solar Radiation ........................................................................................................................... 71 5.5.2. “Instrumentation Selection Options .............................................................................................................. 72 5.5.3. Resources and suppliers .............................................................................................................................. 77 LIST OF FIGURES FIGURE 1. COMPARATIVE ENERGY COSTS FOR DIFFERENT SOURCES REPORTED BY THE IPCC (2011). IT MAY BE OBSERVED HOW IN SEVERAL SCENARIOS SOLAR ELECTRICITY IS ALREADY COMPETITIVE WITH CONVENTIONAL ELECTRICITY (SOURCE: INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE IPCC-XXXIII/DOC. 20(9.V.2011)) ........................................................................................................ 9 FIGURE 2. SOLAR AND NUCLEAR COSTS. THE HISTORIC CROSSOVER ......................................................................................... 10 FIGURE 3. COUNTRIES WITH CSP OPERATIONAL .................................................................................................................... 13 FIGURE 4. HISTORIC AND PROJECTED CSP PIPELINE............................................................................................................... 13 FIGURE 5. TYPES OF IMPLEMENTATION SHEEMES FOR CSP ...................................................................................................... 16 FIGURE 6. EXAMPLE OF IMPLEMENTATION OF CSP IN CONVENTIONAL RANKINE CYCLE ................................................................. 17 FIGURE 7. EXAMPLE SCHEME OF INTEGRATION OF CONCENTRATING SOLAR HEAT INTO A COMBINED CYCLE. ....................................... 17 FIGURE 8. EXAMPLE SCHEME OF INTEGRATION OF CONCENTRATING SOLAR HEAT INTO A COMBINED CYCLE (ISCC). ........................... 18 FIGURE 9. LINE-FOCUSING SYSTEMS: LEFT: PARABOLIC TROUGH COLLECTOR: 64 MWEL POWER PLANT NEVADA SOLAR ONE; DIMENSIONS: COLLECTOR APERTURE WIDTH 5 M (MORIN, 2010). RIGHT: LINEAR FRESNEL COLLECTOR: 1.4 MWEL PLANT PE1 IN MURCIA, SPAIN; DIMENSIONS: RECEIVER HEIGHT ABOVE MIRROR FIELD: 7 M (NOVATEC, 2010)............................................................................... 19 FIGURE 10. POINT-FOCUSING SYSTEMS: LEFT: SOLAR TOWER PLANT PS10, 11 MWEL IN SEVILLE, SPAIN; 624 SO-CALLED HELIOSTATS, 120 M2 EACH, FOCUS THE SUNLIGHT ONTO A RECEIVER ON TOP OF A 100 M HIGH TOWER (ABGENGOA, 2010). RIGHT: DISH STIRLING PROTOTYPE PLANTS OF 10 KWEL EACH IN ALMERÍA, SPAIN; DIAMETER 8.5M (PSA, 2010) ............................................................ 19 FIGURE 11. BASIC COMPONENTS OF PARABOLIC TROUGH CSP (PT-CSP) ............................................................................... 22 FIGURE 12. NEW DESIGNS OF SUPPORTING STRUCTURES TO REDUCE THE INSTALLATION COST......................................................... 24 FIGURE 13. ANDASOL 1 AND 2 (IN GAUDIX, GRANADA, SPAIN) ................................................................................................. 25 FIGURE 14. SOLNOVA 1,2 AND 4 (WITH PS10 AND PS20 ABOVE) (IN SANLUCAR LA MAYOR, SEVILLE, SPAIN) ................................ 26 FIGURE 15. EXTRESOL 1. (EXTREMADURA, SPAIN) ................................................................................................................. 26 FIGURE 16. CTS PUE RTOLLANO (PUE RTOLLANO, CIUDAD REAL, SPAIN). .................................................................................. 27 FIGURE 17. LA FLORIDA, ALVARADO, SPAIN. ......................................................................................................................... 27 FIGURE 18. PROJECTED EVOLUTION OF TECHNOLOGIES FROM THE HEAT TRANSFER FLUID POINT OF VIEW. (SOURCE ATKEARNEY- ESTELA).......................................................................................................................................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages80 Page
-
File Size-