Anales del Jardín Botánico de Madrid 74(1): e052 2017. ISSN: 0211-1322. doi: http://dx.doi.org/10.3989/ajbm.2455 Cytogenetic relationships within the Maghrebian clade of Festuca subgen. Schedonorus (Poaceae), using flow cytometry and FISH David Ezquerro-López1, David Kopecký2 & Luis Á. Inda1* 1Grupo BIOFLORA, Escuela Politécnica Superior de Huesca, Instituto Agroalimentario de Aragón–IA2, Universidad de Zaragoza, 22071 Huesca, Spain; [email protected] 2Centre of the region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelu˚ 31, Olomouc-Holice, 78371, Czech Republic Abstract Resumen Ezquerro-López, D., Kopecký, D. & Inda, L.Á. 2017. Cytogenetic rela- Ezquerro-López, D., Kopecký, D. & Inda, L.Á. 2017. Relaciones cito- tionships within the Maghrebian clade of Festuca subgen. Schedonorus genéticas en el clado magrebí de Festuca subgen. Schedonorus (Poaceae), (Poaceae), using flow cytometry and FISH. Anales Jard. Bot. Madrid mediante la utilización de citometría de flujo y FISH. Anales Jard. Bot. 74(1): e052. Madrid 74(1): e052. Festuca subgen. Schedonorus is a group of broad-leaved fescues, which Festuca subgen. Schedonorus es un grupo de festucas de hojas anchas que can be divided into two clades: European and Maghrebian. We employed se divide tradicionalmente en dos clados, uno europeo y otro magrebí. fluorescent in situ hybridization —FISH— with probes specific for 5S and Mediante hibridación in situ fluorescente —FISH— con sondas específicas 35S ribosomal DNA and genome size estimation using flow cytometry to para las regiones ribosómicas 5S y 35S en su cariotipo y estimaciones de shed light on the determination of possible parental genomes of poly- tamaño genómico mediante citometría de flujo se intentó determinar los ploid species of the Maghrebian clade. Our results indicate that octoploid posibles genomas parentales de las especies poliploides del clado magrebí. F. arundinacea subsp. atlantigena probably originated from crossing of Nuestros datos indican que la especie octoploide F. arundinacea subsp. the tetraploids F. arundinacea subsp. fenas —2n = 4x = 28— and F. mairei atlantigena probablemente se originó a partir del cruce de los tetraploides —2n = 4x = 28— followed by whole genome duplication. However, a F. arundinacea subsp. fenas —2n = 4x = 28— y F. mairei —2n = 4x = 28— large reconstruction of karyotype and genome downsizing has been seguido de la duplicación del genoma. Sin embargo, también se ha detectado revealed. Similarly, hexaploid F. arundinacea subsp. corsica presumably una reconstrucción del cariotipo y una reducción del tamaño genómico. De resulted from the interspecific hybridization of the diploid F. pratensis forma similar la especie hexaploide F. arundinacea subsp. corsica parece ser and tetraploid F. arundinacea subsp. fenas. Several scenarios on the ori- un híbrido entre el diploide F. pratensis y el tetraploide F. arundinacea subsp. gin of decaploid F. arundinacea var. letourneuxiana are discussed. This fenas. Se discuten diversas posibilidades sobre el origen del decaploide study contributed to our knowledge on the phylogeny of broad-leaved F. arundinacea var. letournexiana. Este trabajo contribuye a conocer mejor fescues and provided new information on the karyotypes —chromosome la filogenia de las festucas de hoja ancha y proporciona nueva información numbers, ploidy levels and numbers and positions of rDNA loci— using sobre los cariotipos de estas especies —números cromosomáticos, niveles de FISH and genome size estimations using flow cytometry in selected taxa ploidía y número y posición de loci de rDNA— mediante FISH y la estima of this important grass genus. de sus tamaños genómicos mediante citometría de flujo. Keywords: Broad-leaved fescues, Festuca subgen. Schedonorus, FISH, Palabras clave: Festuca subgen. Schedonorus, festucas de hoja ancha, genome size, rDNA. FISH, tamaño genómico, rADN. ORCID ID: D. Esquerro-López (http://orcid.org/0000-0003-1771-8839); D. Kopecký (http://orcid.org/0000-0002-2834-1734); L.Á. Inda (http://orcid. org/0000-0002-1214-375X). Received: 8-IX-2016; accepted: 31-I-2017; published online: 3-V-2017; Associate Editor: Teresa Garnatje. Copyright: © 2017 CSIC. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial (by-nc) Spain 3.0 License. INTRODUCTION by recent molecular phylogenetic analyses (Torrecilla & Subtribe Loliinae Dumort. belongs to the broad subfa- Catalán, 2002; Catalán & al., 2004; Inda & al., 2008). mily of grasses Pooideae Benth. —Poaceae Barnhart— and The “Schedonorus -Lolium complex” is one of the main is formed by the genus Festuca L. and 10 closely related groups within the broad-leaved fescues. This complex genera (Catalán, 2006; Inda & al., 2008). This large group of comprises representatives of F. subgen. Schedonorus temperate grasses is found over most of the world —except (P. Beauv) Petern., Lolium L., and Micropyropsis Romero the Antarctic region—, with Eurasia being the primary cen- Zarco & Cabezudo. The complex can be divided into two ter of diversification. Festuca was morphologically divided clades, the “European clade” and the “Maghrebian clade”, into 2 main groups characterized according to the width of based on the geographical location of most of their respec- the leaves: the so-called “broad-leaved” and “fine-leaved” tive representatives. The divergence of these two clades has fescues (Hackel, 1882). This separation has been supported been supported by molecular studies (Inda & al., 2014). * Corresponding author D. Ezquerro-López & al. 2 The area of origination of the Maghrebian clade was and high-throughput for screening thousands of such inferred to be the western Mediterranean region, where potential hybrids and allopolyploids. successive divergence occurred during the early Pliocene Several species of F. subgen. Schedonorus, including and Pleistocene. This results in the dispersal of the tall fescue (F. arundinacea) and meadow fescue (F. pra- clade mostly in NW Africa and SW Europe (Inda & al., tensis), are widely used for forage and turf. Moreover, the 2014). The speciation of the members of this clade was ability of interspecific hybridization within Schedonorus- presumably associated with interspecific hybridization Lolium complex is recently used in grass breeding and and several steps of polyploidization (Borrill & al., 1977; several interspecific and intergeneric hybrids including Inda & al., 2014). hybrid ryegrass and ×Festulolium —hybrids of Festuca and The Maghrebian clade involves only polyploid species, Lolium— have been released and became popular among such as F. arundinacea subsp. fenas (Lag.) Bornm. —2n = farmers (Kopecký & al., 2005, 2008a). Climatic changes 4x = 28—, F. mairei St.-Yves —2n = 4x = 28—, F. arun- call for implementation of new alleles into existing crop dinacea subsp. corsica (Hack.) Kerguélen —2n = 6x = cultivars and thus, we can predict increasing interest in the 42—, F. arundinacea subsp. atlantigena (St.-Yves) Auquier employment of other wild species in breeding. Despite the —2n = 8x = 56—, and F. arundinacea var. letourneuxiana importance of this complex, only little is known on the (St.-Yves) Torrec. & Catalán —2n = 10x = 70—. On the origination and the genomic composition of F. subgen. other hand, the European clade is represented by both Schedonorus species, especially those of the Maghrebian diploid —F. pratensis Huds., F. fontqueri St.-Yves, and clade. Such knowledge would be important for the tar- Micropyropsis tuberosa Romero Zarco & Cabezudo— and geted selection for interspecific crosses. polyploid species —tetraploid F. pratensis subsp. apen- The aim of our study was to determine the potential nina De Not. and hexaploids F. arundinacea Schreb. subsp. progenitor genomes of polyploid fescue species of the arundinacea and F. gigantea (L) Vill.— (Borrill & al., 1977; Maghrebian clade using fluorescent in situ hybridization Catalán & al., 2004; Hand & al., 2010; Inda & al., 2008, with probes specific for ribosomal DNAs —5S and 35S— 2014). and the estimation of genome size using flow cytometry The advent of molecular cytogenetics enabled to and with respect to the phylogenetic framework of this employ techniques such as fluorescent in situ hybridization group obtained in our previous studies. —FISH— and genomic in situ hybridization —GISH— for phylogenetic studies. Humphreys & al. (1995) used GISH to indicate the origin of hexaploid F. arundinacea MATERIAL AND METHODS by interspecific hybridization of diploid F. pratensis and tetraploid F. arundinacea var. glaucescens Boiss. (F. arun- Plant material dinacea susbp. fenas). This hybridization was followed by We focused on various fescues from the Maghrebian whole genome duplication or alternatively, merge of unre- clade. The seeds of these species were obtained from the duced gametes took place. Similarly, GISH results con- germplasm banks Western Regional Plant Introduction firmed that diploid F. pratensis is one of the progenitors Station —WRPIS—, the Agriculture Service of the United of tetraploid F. pratensis subsp. apennina (Kopecký & al., States —USDA, USA—, and Aberystwyth Genetic unpubl.). This method has been also successfully used for Resources —ABY, Aberystwyth, United Kingdom—. the genome composition analysis of various interspecific The species with their accessions are (Table 1): F. mairei: hybrids including ×Festulolium Asch. & Graebn. (Thomas WRPIS PI-610941 —Morocco— and WRPIS PI-283312 & al., 1994; Kopecký & al.,
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages9 Page
-
File Size-