Quantum Chemistry a Concise Reference of Formulae, Concepts & Data

Quantum Chemistry a Concise Reference of Formulae, Concepts & Data

Quantum Chemistry A Concise Reference of Formulae, Concepts & Data Dr. Wissam Helal, Department of Chemistry, The University of Jordan, [email protected] October 10, 2020 About this document This document is intended to be a concise desk reference of quantum chemistry to be used by both undergraduate and graduate students. It contains three main parts: basic formulas, concepts, and symbols of quantum chemistry (sections 1 – 6); a short review of relevant mathematics and classical physics (sections 7 & 8); and some miscellaneous other useful data (sections 9 & 10). It should be emphasized that this document is not intended to be a summary of any quantum chemistry course, but rather, a useful handout to be used when working out problems. Moreover, this short refernce is far to be comprehensive and do not cover all aspects of the field. Contents 7 Mathematics 11 7.1 Algebra, Geometry & Trigonometry ...... 11 1 Quantum Mechanics 2 7.2 Derivatives & Integrals .............. 12 1.1 Formulae of Quantum Mechanics ........ 2 7.3 Table of Integrals ................. 12 1.2 Postulates of Quantum Mechanics ....... 3 7.4 Power Series .................... 13 1.3 Dirac Notation (Bracket Notation) ....... 3 7.5 Spherical Polar Coordinates ........... 13 1.4 Theorems of Quantum Mechanics ........ 3 7.6 Complex Numbers ................ 13 7.7 Vectors ...................... 14 2 Systems with Exact Solutions 4 7.8 Determinants ................... 15 2.1 The Particle in a Box .............. 4 7.9 Simultaneous Linear Equations ......... 15 2.2 The Particle in a Ring .............. 4 7.10 Matrices ...................... 15 2.3 The Harmonic Oscillator ............. 4 7.11 Eigenvalues and Eigenvectors .......... 16 2.4 Angular Momentum ............... 5 2.5 The Rigid Rotor ................. 5 8 Classical Physics 17 2.6 The Hydrogen (Hydrogenlike) Atom ...... 5 8.1 Classical Mechanics ................ 17 8.2 The Classical Wave Equation .......... 18 3 Approximation Methods 7 8.3 Electrostatics ................... 18 3.1 The Variational Method ............. 7 8.4 Magnetism .................... 18 3.2 Perturbation Theory ............... 7 9 Molecular&Spectroscopic Data 19 4 Electron Spin 7 10 Other Useful Data 20 5 Polylectronic Atoms 7 10.1 SI Units & Unit Prefixes ............. 20 5.1 Hamiltonian & Wavefunctions .......... 7 10.2 Energy Conversion Factors ........... 20 5.2 Angular Momenta ................ 8 10.3 Symbols for Elementary Particles ........ 20 5.3 Atomic Term Symbols & Spectra ........ 8 10.4 Fundamental Physical Constants ........ 21 10.5 Atomic Units ................... 21 6 Molecular Electronic Structure 9 10.6 The Greek Alphabet ............... 21 6.1 Molecular Orbital Theory ............ 9 10.7 Periodic Table of the Elements ......... 22 6.2 Molecular Term Symbols ............. 9 10.8 Atomic Masses for Selected Isotopes ...... 22 6.3 H¨uckel MO Theory ................ 9 10.9 Effective Nuclear Charge (Zeff = Z σ) .... 22 6.4 Molecular Symmetry ............... 10 − 6.5 The Born-Oppenheimer Approximation .... 10 1 1 Quantum Mechanics Orthonormalization of functions and Kronecker delta: 1.1 Formulae of Quantum Mechanics 0 for i = j ψ∗ψ dτ = δ , δ = (13) i j ij ij 1 for i =6 j Speed of electromagnetic waves in terms of frequency ν Z and wavelength λ: c = νλ (1) The sum and the difference of two operators Aˆ and Bˆ: Frequency ν and wavelength λ with relation to wavenum- (Aˆ Bˆ)f(x)= Afˆ (x) Bfˆ (x) (14) bersν ˜: 1 ν ± ± ν˜ = = (2) λ c The product of two operators Aˆ and Bˆ: Planck quantization of energy: ˆ ˆ ˆ ˆ E = hν (3) ABf(x)= A[Bf(x)] (15) de Broglie wavelength λ in terms of the particle’s momen- Linear operators should satisfy: Identities of commuta- tum p: h h tors (where k is a constant and the operators are assumed λ = = p mv to be linear): Time-dependent Schr¨odinger equation for one-particle [A,ˆ Bˆ]= [B,ˆ Aˆ] (16) (with mass m), one-dimensional system, in terms of wave- − [A,ˆ Aˆn] = 0, n = 1, 2, 3,... (17) function Ψ and potential energy function V (x,t)(~ = h ): 2π ˆ ˆ ˆ ˆ ˆ ˆ ~ ∂Ψ(x,t) ~2 ∂2Ψ(x,t) [kA, B]=[A,kB]= k[A, B] (18) = + V (x,t)Ψ(x,t) (4) − i ∂t −2m ∂x2 [Aˆ + B,ˆ Cˆ]=[A,ˆ Cˆ]+[B,ˆ Cˆ] (19) The probability at time t of finding the particle in the [A,ˆ Bˆ + Cˆ]=[A,ˆ Bˆ]+[A,ˆ Cˆ] (20) region of the x-axis lying between x and x + dx, for a ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ one-particle, one-dimensional system: [AB, C]=[A, C]B + A[B, C] (21) Ψ(x,t) 2 dx (5) [A,ˆ BˆCˆ]=[A,ˆ Bˆ]Cˆ + Bˆ[A,ˆ Cˆ] (22) | | The function Ψ(x,t) 2 is the probability density, de- Average value of an observable A: fined as | | Ψ 2 =Ψ∗Ψ (6) | | ∗ ∗ A = ψ Aψˆ dτ (23) with Ψ being the complex conjugate of the function Ψ, h i the complex conjugate being formed by replacing i with Z i wherever it occurs. If A and B are any two properties and k is a constant: − A + B = A + B and kA = k A (24) Time-dependent wave function Ψ is a function of time- h i h i h i h i h i independent wavefunction ψ(x) and time function f(t): ~ Ψ(x,t)= ψ(x) f(t)= ψ(x) e−iEt/ (7) However, the average value of a product need not equal the product of the average values: Time-independent Schr¨odinger equation in terms of the ˆ AB = A B (25) Hamiltonian operator H, the wavefunction ψ (or h i 6 h ih i eigenfunction), and energy E (or eigenvalue): pˆ2 Hermitian operators are defined as: Hψˆ = Eψ, Hˆ = Tˆ + V,ˆ Tˆ = q (8) 2m ∗ ˆ ˆ ∗ ψmAψndτ = ψn(Aψm) dτ (26) Linear momentum quantum mech. operator in the q axis: Z Z ~ ∂ pˆq = (9) The variance σ2 and the standard deviation σ (or ∆) i ∂q of an observable A: One-particle three-dimensional Hamiltonian operator: 1/2 ~2 ∂2 ∂2 ∂2 2 2 2 2 2 ˆ 2 2 σA = A A and σA ∆A = A A H = +V (x,y,z), = 2 + 2 + 2 (10) h i−h i ≡ h i−h i −2m∇ ∇ ∂x ∂y ∂z The probability of finding a particle between x1 and x2: Robertson inequality x2 ∗ Probability (x1 x x2)= ψ (x)ψ(x) dx (11) 1 ∗ ˆ ˆ ≤ ≤ σAσB ∆A∆B Ψ [A, B]Ψ dτ Zx1 ≡ ≥ 2 Z The normalization condition in three-dimension: +∞ +∞ +∞ Heisenberg uncertainty relations: position x and linear ∗ ψ (x,y,z)ψ(x,y,z) dxdy dz momentum px, energy E and time t, and angle φ and an- Z−∞ Z−∞ Z−∞ gular momentum L complementaries: = ψ∗ψdτ = 1 (12) ~ ~ ~ ∆x∆p , ∆E∆t , ∆φ∆L (27) Z x ≥ 2 ≥ 2 z ≥ 2 2 ∗ ˆ 1.2 Postulates of Quantum Mechanics The definite integral Ψ1AΨ2dτ is abreviated: Postulate 1 (Wavefunctions): The state of a quantum Ψ Aˆ Ψ 1 Aˆ 2 Ψ∗AˆΨ dτ A (31) h 1| | 2i≡h |R | i≡ 1 2 ≡ 12 mechanical system is completely specified by a state func- An operator Aˆ is said to be HermitianZ if it satisfies: tion, Ψ(r, t), that is a function of the coordinates of the ψ Aˆ ψ = ψ Aˆ ψ ∗ ψ∗ Aψˆ dτ = ψ (Aψˆ )∗dτ particles r and the time t. If time is not a variable, its h m| | ni h n| | mi ≡ m n n m Z Z state is completely specified by a time-independent wave- 1.4 Theorems of Quantum Mechanics function ψ(r). All possible information about the system Hermitian operators: can be derived from Ψ(r, t). These wavefunctions are well behaved: single-valued, continuous, and quadratically in- 1. The eigenvalues of a Hermitian operator are real. ˆ tegrable. 2. Two eigenfunctions of a Hermitian operator A that correspond to different eigenvalues are orthogonal. Postulate 2 (Operators): To every observable in classical Eigenfunctions of Aˆ that belong to a degenerate mechanics there corresponds a linear Hermitian quantum eigenvalue can always be chosen to be orthogonal. mechanical operator. The operator is obtained from the 3. Let the functions g1 , g2 , ... be the complete set of classical mechanical expression for the observable written eigenfunctions of the Hermitian operator Aˆ, and let in terms of Cartesian coordinates and corresponding lin- the function Ψ be an eigenfunction of Aˆ with eigen- ear momentum components by replacing each coordinate value k. Then if Ψ is expanded as Ψ = aigi q by itself and the corresponding momentum component i ≡ Ψ = i gi gi Ψ , the only nonzero coefficients ai pq by i~ ∂/∂q. | i | ih | i P − are those for which gi has the eigenvalue k. Postulate 3 (Eigenvalues): In any measurement of the These threeP theorems can be summarized as: the eigen- physical observable A associated with the operator Aˆ, the functions of a Hermitian operator form a complete, or- only values that will ever be observed are the eigenvalues thonormal set, and the eigenvalues are real. ai, which satisfy the eigenvalue equation Commuting operators: AˆΨi = aiΨi 4. If the linear operators Aˆ and Bˆ have a common com- ˆ ˆ The eigenfunctions Ψi are required to be well-behaved. plete set of eigenfunctions, then A and B commute. Postulate 4 (Completeness): If Aˆ is a linear Hermitian 5. If [A,ˆ Bˆ]=0(Aˆ and Bˆ Hermitian), we can select a operator that represents a physically observable property, common complete set of eigenfunctions for them. then the eigenfunctions gi of Aˆ form a complete set. 6. If gm and gn are eigenfunctions of the Hermitian operator Aˆ with different eigenvalues (that is, if Postulate 5 (Average values): If Ψ(r, t) is the normal- Agˆ = a g and Agˆ = a g with a = a ), ized state function of a system at time t, then the average m m m n n n m n and if the linear operator Bˆ commutes with A6ˆ, then value of the observable A corresponding to Aˆ is g Bˆ g = 0 for a = a .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    22 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us