Iteration Z-Transform Solving Impulse Response

Iteration Z-Transform Solving Impulse Response

Solving impulse response y[n] = x[n]− y[n − 2] x[n] = δ[n] z-transform iteration € −2 y[0]= x[0]− y[−2]=1− 0 =1 Y (z) = X(z) − z Y (z) € y[1]= x[1]− y[−1]= 0 − 0 = 0 1+ z−2 Y (z) = X(z) y[2]= x[2]− y[0]= 0 −1= −1 ( ) Y (z) 1 system y[3]= x[3]− y[1]= 0 − 0 = 0 H (z) = = € −2 function € y[4]= x[4]− y[2]= 0 − (−1) =1 X(z) 1+ z € ( ) € M € 1 Y (z) = H (z)X(z) = X(z) € (1+ z−2) € € € Remember: 1 z 2 z 2 − cos(ωˆ )z Y (z) = = X(z) = −2 2 2 1+ z z +1 z − 2 cos(ωˆ )€z + 1 ( ) c ⇓ Inverse z-transform (lookup) x[n] = cos(ωˆ n)u[n] € 2π π 2π y[n]= h[n]= cos nu [n] € ωˆ = = € 2 4 € 4 y[n]= {1,0,−1,0,1,K} € € € € The signal has same z-transform y[n] = x[n]− y[n − 2] as system. The signal is the impulse response of the system ⇓ z-transform 2 € Y (z) 1 z system zeros = roots(z 2) = 0,0 H (z) = = = 2 € 2 2 function poles = roots(z +1) = ± j X(z) (1+ z− ) z +1 n € n Poles: values of z for input x [ n ] = z where output€ y[n] = H(z)z → ∞ Zeros: values of z for input x [ n ] = z n where output y[n] = H(z)z n → 0 € € 2π € signal 1 y[n]= h[n]= cos€ nu [n] € 4 0.8 ⇓ z-transform 0.6 2 1 z 0.4 Y (z) = = 1 z−2 z 2 +1 0.2 € + 2 € ( ) 0 Imaginary part -0.2 TextEnd Poles: z locations of y[n] = z n -0.4 -0.6 Zeros: related to the magnitude and phase of y[n] = z n € -0.8 -1 The closer a zero is to a pole, the smaller € -1 -0.5 0 0.5 1 the effect the pole. Real part € Solve difference equation 2π y[n] = x[n]− y[n − 2] h[n]= cos nu [n] impulse response 4 x[n] = u[n] step input iteration € y[0]= x[0]− y[−2]=1− 0 =1 € € y[1]= x[1]− y[−1]=1− 0 =1 y[2]= x[2]− y[0]=1−1= 0 y[3]= x[3]− y[1]=1−1= 0 € y[4]= x[4]− y[2]=1− 0 =1 € € convolution M € x[n] 1 1 1 1 1 1 1 … € h[n] 1 0 -1 0 1 0 - 1 … € =============================================== 1 1 1 1 1 1 1 0 0 0 0 0 0 -1 -1 -1 -1 -1 … 0 0 0 0 1 1 1 M =============================================== 1 1 0 0 1 … € z-transforms y[n] = x[n]− y[n − 2] x[n] = u[n] ⇓ z ⇓z 1 Y (z) = X(z) − z−2Y (z) X(z) = € € 1− z−1 1 Y (z) = X(z) = H (z)X(z) multiplication y[n] Y(z) € −2 € € (1+ z ) € € 2π 1 1 1 € cos nu [n] ⇔ −2 Y (z) = 4 (1+ z ) −2 −1 1 1+ z 1− z n ( ) ( ) € a€ u[n] ⇔ −1 (1− z ) € ⇓ partial fraction expansion (distinct complex roots) € 1 2 1 2 1 z−1 € n y[n]€ Y (z) = + + € € €(1 − z−1) (1+ z−2) 2 (1+ z−2 ) 0€ 1/2+1/2+0=1€ 1 1/2+0+1/2=1 ⇓ Inverse z-transform (lookup) € €2 1/2-1/2+0=0 1 1 2π 1 2π 3 1/2+0-1/2=0 € y[n] = €+ cos n + cos (n −1) ⇒ 2 2 4 2 4 4 1/2+1/2+0=1 5 1/2+0+1/2=1 € € Partial fraction expansion 1 A B Y(z) = = −1 + −1 We know: 1 2z−1 1 3 z−1 1+ 2z 1− 3 z ( + )( − 4 ) ( ) ( 4 ) right sided sequence 1 ⇔ anu[n] 1− az−1 ⇓ cross multiply z > a € € left sided sequence 3 −1 −1 A(1− 4 z ) + B(1+ 2z ) Y(z) € 1 n = −1 −1 € ⇔ −a u[−n −1] 3 € −1 (1+ 2z )(1− 4 z ) 1− az z < a ⇓ collect terms € € 3 € −1 € (− 4 A + 2B)z + (A + B) Y(z) = −1 3 −1 (1+ 2z )(1− 4 z ) € 1 Y(z) = −1 3 −1 (1+ 2z )(1− 4 z ) A B = + We know: −1 3 −1 (1+ 2z ) (1− 4 z ) right sided sequence € 1 n −1 ⇔ a u[n] 3 −1 1− az (− 4 A + 2B)z + (A + B) = z > a € 1+ 2z−1 1− z−1 ( )( ) left sided sequence 1 n − 3 A + 2B = 0 A + B = 1 match coefficients€ ⇔ −a u[−n −1] 4 1−€az −1 € 8 3 z < a A = B = 11 11 € € € € 8 11 3 11 1 Y(z) = + = € € −1 3 −1 1+ 2z−1 1− 3 z−1 (1+ 2z ) (1− 4 z ) ( )( 4 ) € € Inverse z-transform 1 Y(z) = −1 3 −1 (1+ 2z )(1− 4 z ) 8 11 3 11 = + We know: −1 3 −1 right sided sequence (1+ 2z ) (1− 4 z ) poles:3/4,-2 € 1 ⇔ anu[n] ⇓ Inverse z-transform −1 n 1− az 8 n 3 3 z > a y[n]= (−2) u[n]+ u[n] z > 2 € 11 11 4 € causal, unstable left sided sequence 1 € ⇔ −anu[−n −1] 1−€az −1 ROC € € z < a 1 € 200 RSS RSS € . 100 0 10 0 10 Inverse z-transform 1 Y(z) = −1 3 −1 (1+ 2z )(1− 4 z ) 8 11 3 11 = + We know: −1 3 −1 right sided sequence (1+ 2z ) (1− 4 z ) poles:3/4,-2 € 1 ⇔ anu[n] ⇓ Inverse z-transform −1 n 1− az 8 n 3 3 3 z > a y[n]= − (−2) u[−n −1]− u[−n −1] z < 4 € 11 11 4 € left sided sequence anticausal, unstable 1 € ⇔ −anu[−n −1] 1−€az −1 € € z < a 5 € . 1 € LSS LSS 0 10 0 10 Inverse z-transform 1 Y(z) = −1 3 −1 (1+ 2z )(1− 4 z ) 8 11 3 11 = + We know: −1 3 −1 right sided sequence (1+ 2z ) (1− 4 z ) poles:3/4,-2 € 1 ⇔ anu[n] ⇓ Inverse z-transform −1 n 1− az 8 n 3 3 z > a y[n]= − (−2) u[−n −1]+ u[n] € 11 11 4 3 z 2 € 4 < < left sided sequence two-sided, stable 1 € ⇔ −anu[−n −1] 1−€az −1 € € z < a 1 € 1 . 0 LSS RSS € 1 10 0 10 Inverse z-transform 1 Y(z) = −1 3 −1 (1+ 2z )(1− 4 z ) 8 11 3 11 = + We know: −1 3 −1 right sided sequence (1+ 2z ) (1− 4 z ) poles:3/4,-2 € 1 ⇔ anu[n] ⇓ Inverse z-transform 1− az−1 n z a 8 n 3 3 > € y[n]= (−2) u[n]− u[−n −1] 3 < z ∩ z > 2 11€ 11 4 4 left sided sequence not possible 1 € ⇔ −anu[−n −1] 1−€az −1 z < a € € € € Inverse z-transform 1 Y(z) = −1 3 −1 (1+ 2z )(1− 4 z ) 8 11 3 11 = + We know: −1 3 −1 right sided sequence (1+ 2z ) (1− 4 z ) poles:3/4,-2 € 1 ⇔ anu[n] ⇓ Inverse z-transform −1 n 1− az 8 n 3 3 z a y[n]= (−2) u[n]+ u[n] z > 2 > € 11 11 4 € causal, unstable left sided sequence n 1 n 8 n 3 3 z <€ 3 ⇔ −a u[−n −1] y[n]= − (−2) u[−n −1]− u[−n −1] 4 1−€az −1 11 11€ 4 € anticausal, unstable z < a n 8 n 3 3 3 y[n]= − (−2) u[−n −1]+ €u [n] 4 < z < 2 11 11 4 € € € two-sided, stable n 8 n 3 3 y[n]= (−2) u[n]− u[−€n −1] 3 z z 2 € 11 11 4 4 < ∩ > not possible € € Partial fraction expansion II 4 + 7.6z−1 4 + 7.6z−1 Y(z) = = −6z−2 + 5z−1 + 4 1+ 2z−1 4 − 3z−1 ( )( ) We know: 1+1.9z−1 factor into form right sided sequence = 1 n −1 3 −1 1 p z−1 1 p z−1 ⇔ a u[n] (1+ 2z )(1− 4 z ) ( + 1 )( − 2 ) −1 € 1− az z > a A B = + −1 3 −1 left sided sequence (1+ 2z ) (1− 4 z ) € € € 1 n −1 ⇔ −a u[−n −1] −1 1−€az −1 1+1.9z A = Y(z) 1+ 2z = = 0.036 z < a ( ) z=−2 3 −1 1− 4 z € ( ) z=−2 −1 3 −1 1+1.9z € B = Y(z) 1− 4 z = = 0.964 ( ) z= 3 −1 4 1+ 2z € ( ) z= 3 € 4 0.036 0.964 Y(z) = + −1 3 −1 (1+ 2z ) (1− 4 z ) € € Effects of a zero zeros: 0,-1.9 zeros: 0,0 1+1.9z−1 Y(z) 1 = −1 −1 Y(z) 3 = −1 −1 1+ 2z 1− 4 z poles:3/4,-2 3 ( )( ) (1+ 2z )(1− 4 z ) 0.036 0.964 Y(z) 8 11 3 11 = −1 + −1 = + 3 −1 3 −1 1+ 2z 1− 4 z 1+ 2z 1− z € ( ) ( ) ( ) ( 4 ) € n n 3 n 8 n 3 3 y[n]= −0.036(−2) u[−n −1]+ 0.964( 4 ) u[n] y[n]= − (−2) u[−n −1]+ u[n] 11 11 4 3 € 4 < z < 2 3 € 4 < z < 2 1 € zero at z=-1.9 1 0.5 close€ to pole at z=-2, € . pole’s effect reduced 0 0 € (0.036 vs. 0.727) 0.5 1 10 0 10 10 0 10 two sided sequences Partial fraction expansion III 1+1.9z−1 Y(z) = We know: −1 3 −1 (1+ 2z )(1− 4 z ) right sided sequence 1 z = ⇔ anu[n] 4 + 7.6z−1 1− az−1 z − a = −6z−2 + 5z−1 + 4 z > a € 4z2 + 7.6z left sided sequence = 2 € € 1 z n 4z + 5z − 6 1 = ⇔ −a u[−n −1] € 1− az− €z − a z2 +1.9z = factor into form (z-p1)(z-p2) z < a z + 2 z − 3 ( )( 4 ) Hint: use matlab’s root command € A B € = + 3 € (z + 2) (z − 4 ) € € Partial fraction expansion III 1+1.9z−1 Y(z) = 1+ 2z−1 1− 3 z−1 We know: ( )( 4 ) right sided sequence 2 1 z n 4z2 + 7.6z z +1.9z = ⇔ a u[n] = = 1− az−1 z − a 2 z + 2 z − 3 4z + 5z − 6 ( )( 4 ) z > a € Az Bz = + + C left sided sequence z + 2 z − 3 1 z ( ) ( 4 ) € € = ⇔ −anu[−n −1] € € 1− az−1 €z − a 4z2 + 7.6z C = = 0 z < a 4z2 5z 6 + − z=0 € Y(z)(z − 3 ) z2 +1.9z B = 4 = =€0.964 z z= 3 z(z + 2) 3 € 4 z= 4 € Y(z)(z + 2) z2 +1.9z A = = = 0.036 z z(z 3 ) z=−2 − 4 z 2 € =− € Partial fraction expansion III 1+1.9z−1 Y(z) = 1+ 2z−1 1− 3 z−1 We know: ( )( 4 ) right sided sequence 2 1 z n 4z + 7.6z −1 = ⇔ a u[n] = 2 1− az z − a 4z + 5z − 6 z > a € 0.036z 0.964z = + left sided sequence z + 2 z − 3 1 z ( ) ( 4 ) € € anu[ n 1] € −1 = ⇔ − − − n n 1− az €z − a y[n]= −0.036 −2 u[−n −1]+ 0.964 3 u[n] ( ) ( 4 ) z < a 3 < z < 2 € 4 1 € € € .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    46 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us