Exponential Asymptotics for Discrete Painlevé Equations Steven

Exponential Asymptotics for Discrete Painlevé Equations Steven

Exponential asymptotics for discrete Painlevé equations Steven Luu A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy School of Mathematics and Statistics University of Sydney May 2018 CONTENTS Abstract............................................................................. vi Statement of Originality.............................................................. viii Acknowledgements .................................................................. ix Chapter 1. Introduction ............................................................ 1 1.1. Painlevé Equations. 1 1.2. Discrete Painlevé equations from the continuous Painlevé equations . 3 1.3. Discrete Painlevé Equations . 5 1.3.1. Types of difference equations . 8 1.3.2. Applications of discrete Painlevé equations . 8 1.4. Some asymptotic results of the Painlevé equations . 8 1.5. Thesis Outline. 9 Chapter 2. Exponential Asymptotics ................................................ 11 2.1. Classical asymptotic power series . 13 2.1.1. Truncation of asymptotic series expansions . 16 2.2. Superasymptotics . 17 2.2.1. Darboux’s Theorem . 21 2.2.2. Optimally-truncated error via Borel summation . 23 2.3. Hyperasymptotics . 26 2.3.1. Applications of Hyperasymptotics . 28 2.4. Stokes Phenomenon . 29 2.5. Example: the hyper-Airy equation . 32 2.5.1. Rescaling the hyper-Airy equation . 32 2.5.2. Asymptotic series expansion . 33 2.5.3. Late-order terms analysis . 34 2.5.3.1. Calculating the singulant, χ ................................................ 35 2.5.3.2. Calculating the prefactor, G ................................................ 35 2.5.3.3. Calculating the value of γi ................................................. 36 2.5.3.4. Calculating the value of Λ .................................................. 37 2.5.4. Optimal truncation . 38 2.5.5. Analysis of the remainder using exponential asymptotics. 39 2.5.5.1. Stokes smoothing . 41 iii iv CONTENTS 2.5.6. Stokes structure . 43 2.6. Further Ideas . 46 Chapter 3. Additive difference equations ............................................ 48 3.1. Introduction . 48 3.2. Discrete Painlevé II . 51 3.3. Scalings of discrete Painlevé II . 52 3.4. Vanishing asymptotics of discrete Painlevé II . 53 3.4.1. Asymptotic series expansions . 53 3.4.2. Late-order terms analysis . 55 3.4.2.1. Calculating the singulant, χ ................................................ 56 3.4.2.2. Calculating the prefactor, F ................................................ 57 3.4.2.3. Calculating the value of k .................................................. 57 3.4.2.4. Calculating the value of Λ .................................................. 58 3.4.3. Vanishing behaviour remainder analysis . 60 3.4.3.1. Stokes smoothing . 61 3.4.4. Asymptotic expansions in terms of the original variables . 63 3.4.5. Stokes structure . 64 3.5. Non-vanishing asymptotics of discrete Painlevé II. 67 3.5.1. Asymptotic analysis of non-vanishing solutions . 68 3.5.2. Singularities of the leading order behaviour . 68 3.5.3. Late-order terms analysis . 70 3.5.3.1. Calculating the singulant, η ................................................ 71 3.5.4. Stokes structure . 72 3.6. Numerical computation for discrete Painlevé II . 76 3.7. Conclusions . 77 Chapter 4. Multiplicative difference equations ....................................... 79 4.1. Introduction . 81 4.1.1. q-Borel summation methods . 83 4.1.2. q-Stokes phenomenon . 84 4.1.3. Describing Stokes phenomena for q-difference equations. 85 4.2. Riemann sheets : Reverting the transformations. 86 4.3. A q-analogue of the Airy equation . 88 4.3.1. Asymptotic analysis of the q-Airy equation . 90 4.3.2. q-periodic functions . 91 4.3.3. WKB phase factor analysis for q-Airy. 93 4.3.4. WKB amplitude factor analysis for q-Airy . 94 4.3.5. Complete asymptotic power series . 95 4.3.6. Stokes structure of q-Airy. 97 4.4. The first q-Painlevé equation . 102 4.4.1. Known results for q-Painlevé I . 102 4.4.2. Asymptotic analysis of the first q-Painlevé equation . 105 CONTENTS v 4.4.3. Asymptotic Series Expansion . 106 4.5. Type A solutions of q-Painlevé I. 110 4.5.1. Late-Order Terms Behaviour . 111 4.5.1.1. Calculating the singulant, χ ................................................ 112 4.5.1.2. Calculating the prefactor, U.................................................112 4.5.1.3. Calculating the value of γ1..................................................114 4.5.2. q-Painlevé I inner problem . 115 4.5.3. Analysis of the remainder using exponential asymptotics. 118 4.5.3.1. Analysis for the homogeneous remainder equation. 119 4.5.3.2. Stokes Smoothing for q-PI ................................................. 120 4.5.4. Stoke structure for type A solutions . 122 4.6. Type B solutions. 132 4.6.1. Stoke Geometry for type B solutions . 134 4.7. Connection between type A and type B solutions and the nonzero and vanishing asymptotic solutions of q-Painlevé I . ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    171 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us