Detecting dark particles from Supernovae Gustavo Marques-Tavares, Stanford Institute for Theoretical Physics In collaboration with W. deRocco, P. Graham, D. Kasen and S. Rajendran Dark matter WIMP searches 5 -37 ACKNOWLEDGMENTS 10 -38 10 PandaX-II 2016 10-39 LUX 2016 ) 2 10-40 CDMSLite 2015 CRESST-II 2015 10-41 10-42 -43 10 SuperCDMS Post LHC1 mSUSY constraint 1700 kg-days 10-44 10-45 -46 10 6 t-y PandaX-4T 10-47 XENON1T 2 t-y LZ 15.6 t-y SI WIMP-nucleon cross section (cm XENONnT 20 t-y 10-48 200 t-y xenon (DARWIN or PandaX-30T) 10-49 Neutrino coherent scattering 10-50 1 10 102 103 WIMP mass (GeV/c2) *Figure taken from arxiv:1709.00688 This work is supported by grants from the Na- FIG. 4. The projected sensitivity (dashed curves) on the spin- tional Science Foundation of China (Nos. 11435008, independent WIMP-nucleon cross-sections of a selected num- ber of upcoming and planned direct detection experiments, 11455001, 11505112 and 11525522), a grant from the including XENON1T [34], PandaX-4T, XENONnT [34], Ministry of Science and Technology of China (Grant No. LZ [35], DARWIN [36] or PandaX-30T, and SuperCDMS [56]. 2016YFA0400301), and in part by the Chinese Academy Currently leading limits in Fig. 1 (see legend), the neutrino of Sciences Center for Excellence in Particle Physics ‘floor’ [20], and the post-LHC-Run1 minimal-SUSY allowed (CCEPP), the Key Laboratory for Particle Physics, As- contours [21] are overlaid in solid curves for comparison. The trophysics and Cosmology, Ministry of Education, and di↵erent crossings of the experimental sensitivities and the Shanghai Key Laboratory for Particle Physics and Cos- 2 neutrino floor at around a few GeV/c are primarily due to mology (SKLPPC). Finally, we thank the Hong Kong di↵erent threshold assumptions. Hongwen Foundation for financial support. [1] G. Bertone, D. Hooper, and J. Silk, Phys. Rept. 405, [14] A. Dedes, I. Giomataris, K. Suxho, and J. D. Vergados, 279 (2005), arXiv:hep-ph/0404175 [hep-ph]. Nucl. Phys. B826,148(2010), arXiv:0907.0758 [hep-ph]. [2] C. Savage, K. Freese, and P. Gondolo, Phys. Rev. D74, [15] R. J. Gaitskell, Ann. Rev. Nucl. Part. Sci. 54,315(2004). 043531 (2006), arXiv:astro-ph/0607121 [astro-ph]. [16] R. Bernabei et al., Eur. Phys. J. C73,2648(2013), [3] G. Jungman, M. Kamionkowski, and K. Griest, Phys. arXiv:1308.5109 [astro-ph.GA]. Rept. 267,195(1996), arXiv:hep-ph/9506380 [hep-ph]. [17] C. E. Aalseth et al. (CoGeNT), Phys. Rev. D88,012002 [4] M. C. Smith et al., Mon. Not. Roy. Astron. Soc. 379,755 (2013), arXiv:1208.5737 [astro-ph.CO]. (2007), arXiv:astro-ph/0611671 [astro-ph]. [18] G. Angloher et al., Eur. Phys. J. C72,1971(2012), [5] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38,1440 arXiv:1109.0702 [astro-ph.CO]. (1977). [19] R. Agnese et al. (CDMS), Phys. Rev. Lett. 111,251301 [6] F. Wilczek, Phys. Rev. Lett. 40,279(1978). (2013), arXiv:1304.4279 [hep-ex]. [7] J. E. Kim, Phys. Rept. 150,1(1987). [20] J. Billard, L. Strigari, and E. Figueroa-Feliciano, Phys. [8] D. J. E. Marsh, Phys. Rept. 643,1(2016), Rev. D89,023524(2014), arXiv:1307.5458 [hep-ph]. arXiv:1510.07633 [astro-ph.CO]. [21] E. A. Bagnaschi et al., Eur. Phys. J. C75,500(2015), [9] J. M. Gaskins, Contemp. Phys. 57,496(2016), arXiv:1508.01173 [hep-ph]. arXiv:1604.00014 [astro-ph.HE]. [22] J. Angle et al. (XENON), Phys. Rev. Lett. 100,021303 [10] J. D. Lewin and P. F. Smith, Astropart. Phys. 6,87 (2008), arXiv:0706.0039 [astro-ph]. (1996). [23] E. Aprile et al. (XENON100), Phys. Rev. Lett. 111, [11] L. E. Strigari, New J. Phys. 11,105011(2009), 021301 (2013), arXiv:1301.6620 [astro-ph.CO]. arXiv:0903.3630 [astro-ph.CO]. [24] D. S. Akerib et al. (LUX), Phys. Rev. Lett. 112,091303 [12] A. Gutlein et al., Astropart. Phys. 34,90(2010), (2014), arXiv:1310.8214 [astro-ph.CO]. arXiv:1003.5530 [hep-ph]. [25] D. S. Akerib et al. (LUX), (2015), arXiv:1512.03506 [13] F. Ruppin, J. Billard, E. Figueroa-Feliciano, and L. Stri- [astro-ph.CO]. gari, Phys. Rev. D90,083510(2014), arXiv:1408.3581 [26] A. Tan et al. (PandaX-II), Phys. Rev. Lett. 117,121303 [hep-ph]. (2016), arXiv:1607.07400 [hep-ex]. WIMP searches 5 -37 ACKNOWLEDGMENTS 10 -38 10 PandaX-II 2016 10-39 LUX 2016 ) 2 10-40 CDMSLite 2015 CRESST-II 2015 10-41 10-42 -43 10 SuperCDMS Post LHC1 mSUSY constraint 1700 kg-days 10-44 10-45 -46 10 6 t-y PandaX-4T 10-47 XENON1T 2 t-y LZ 15.6 t-y SI WIMP-nucleon cross section (cm XENONnT 20 t-y 10-48 200 t-y xenon (DARWIN or PandaX-30T) ? 10-49 Neutrino coherent scattering 10-50 1 10 102 103 WIMP mass (GeV/c2) *Figure taken from arxiv:1709.00688 This work is supported by grants from the Na- FIG. 4. The projected sensitivity (dashed curves) on the spin- tional Science Foundation of China (Nos. 11435008, independent WIMP-nucleon cross-sections of a selected num- ber of upcoming and planned direct detection experiments, 11455001, 11505112 and 11525522), a grant from the including XENON1T [34], PandaX-4T, XENONnT [34], Ministry of Science and Technology of China (Grant No. LZ [35], DARWIN [36] or PandaX-30T, and SuperCDMS [56]. 2016YFA0400301), and in part by the Chinese Academy Currently leading limits in Fig. 1 (see legend), the neutrino of Sciences Center for Excellence in Particle Physics ‘floor’ [20], and the post-LHC-Run1 minimal-SUSY allowed (CCEPP), the Key Laboratory for Particle Physics, As- contours [21] are overlaid in solid curves for comparison. The trophysics and Cosmology, Ministry of Education, and di↵erent crossings of the experimental sensitivities and the Shanghai Key Laboratory for Particle Physics and Cos- 2 neutrino floor at around a few GeV/c are primarily due to mology (SKLPPC). Finally, we thank the Hong Kong di↵erent threshold assumptions. Hongwen Foundation for financial support. [1] G. Bertone, D. Hooper, and J. Silk, Phys. Rept. 405, [14] A. Dedes, I. Giomataris, K. Suxho, and J. D. Vergados, 279 (2005), arXiv:hep-ph/0404175 [hep-ph]. Nucl. Phys. B826,148(2010), arXiv:0907.0758 [hep-ph]. [2] C. Savage, K. Freese, and P. Gondolo, Phys. Rev. D74, [15] R. J. Gaitskell, Ann. Rev. Nucl. Part. Sci. 54,315(2004). 043531 (2006), arXiv:astro-ph/0607121 [astro-ph]. [16] R. Bernabei et al., Eur. Phys. J. C73,2648(2013), [3] G. Jungman, M. Kamionkowski, and K. Griest, Phys. arXiv:1308.5109 [astro-ph.GA]. Rept. 267,195(1996), arXiv:hep-ph/9506380 [hep-ph]. [17] C. E. Aalseth et al. (CoGeNT), Phys. Rev. D88,012002 [4] M. C. Smith et al., Mon. Not. Roy. Astron. Soc. 379,755 (2013), arXiv:1208.5737 [astro-ph.CO]. (2007), arXiv:astro-ph/0611671 [astro-ph]. [18] G. Angloher et al., Eur. Phys. J. C72,1971(2012), [5] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38,1440 arXiv:1109.0702 [astro-ph.CO]. (1977). [19] R. Agnese et al. (CDMS), Phys. Rev. Lett. 111,251301 [6] F. Wilczek, Phys. Rev. Lett. 40,279(1978). (2013), arXiv:1304.4279 [hep-ex]. [7] J. E. Kim, Phys. Rept. 150,1(1987). [20] J. Billard, L. Strigari, and E. Figueroa-Feliciano, Phys. [8] D. J. E. Marsh, Phys. Rept. 643,1(2016), Rev. D89,023524(2014), arXiv:1307.5458 [hep-ph]. arXiv:1510.07633 [astro-ph.CO]. [21] E. A. Bagnaschi et al., Eur. Phys. J. C75,500(2015), [9] J. M. Gaskins, Contemp. Phys. 57,496(2016), arXiv:1508.01173 [hep-ph]. arXiv:1604.00014 [astro-ph.HE]. [22] J. Angle et al. (XENON), Phys. Rev. Lett. 100,021303 [10] J. D. Lewin and P. F. Smith, Astropart. Phys. 6,87 (2008), arXiv:0706.0039 [astro-ph]. (1996). [23] E. Aprile et al. (XENON100), Phys. Rev. Lett. 111, [11] L. E. Strigari, New J. Phys. 11,105011(2009), 021301 (2013), arXiv:1301.6620 [astro-ph.CO]. arXiv:0903.3630 [astro-ph.CO]. [24] D. S. Akerib et al. (LUX), Phys. Rev. Lett. 112,091303 [12] A. Gutlein et al., Astropart. Phys. 34,90(2010), (2014), arXiv:1310.8214 [astro-ph.CO]. arXiv:1003.5530 [hep-ph]. [25] D. S. Akerib et al. (LUX), (2015), arXiv:1512.03506 [13] F. Ruppin, J. Billard, E. Figueroa-Feliciano, and L. Stri- [astro-ph.CO]. gari, Phys. Rev. D90,083510(2014), arXiv:1408.3581 [26] A. Tan et al. (PandaX-II), Phys. Rev. Lett. 117,121303 [hep-ph]. (2016), arXiv:1607.07400 [hep-ex]. Challenges for sub-GeV DM 3 Low kinetic energy: v 10− ⇠ 6 K 10− m <keV ⇠ χ Challenges for sub-GeV DM Neutrino “floor” Goodman & Witten 3 Low kinetic energy: v 10− ⇠ 6 K 10− m <keV ⇠ χ Large background: Ideas do exist Phys. Rev. D 90, 083510 (2014) how to go beyond this “floor” (directional, annual modulation, etc), but the pragmatic issue is still how to get there Jianglai Liu Pheno 2017 7 Many strategies ‣ Search for electron scattering ‣ Accelerator searches ‣ New targets … Many strategies ‣ Search for electron scattering ‣ Accelerator searches ‣ New targets … Searching for boosted dark matter from Supernovae Outline ‣ Model ‣ Source: Supernovae ‣ Computing fluxes and projected sensitivity ‣ Conclusion and future directions Dark photon portal µ µ⌫ A0 χγ¯ χ + ✏F 0 F L ⊃ µ µ⌫ χ A0 γ SM ϵ χ¯ Dark photon portal µ µ⌫ A0 χγ¯ χ + ✏F 0 F L ⊃ µ µ⌫ χ A0 γ SM ϵ χ¯ mA0 & 200 MeV >mχ g e✏ d χγ¯ χJ µ L ⊃ m2 µ EM A0 Dark photon portal g e✏ 4 d µ 2 mχ χγ¯ µχJ y = ↵ ✏ L ⊃ m2 EM d m A0 ✓ A0 ◆ ↵y σ 2 ⇠ mχ parameter space in these models corresponds to DM-mediator coupling strengths that are SM-like.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages46 Page
-
File Size-