Gustavo Marques-Tavares, Stanford Institute for Theoretical Physics

Gustavo Marques-Tavares, Stanford Institute for Theoretical Physics

Detecting dark particles from Supernovae Gustavo Marques-Tavares, Stanford Institute for Theoretical Physics In collaboration with W. deRocco, P. Graham, D. Kasen and S. Rajendran Dark matter WIMP searches 5 -37 ACKNOWLEDGMENTS 10 -38 10 PandaX-II 2016 10-39 LUX 2016 ) 2 10-40 CDMSLite 2015 CRESST-II 2015 10-41 10-42 -43 10 SuperCDMS Post LHC1 mSUSY constraint 1700 kg-days 10-44 10-45 -46 10 6 t-y PandaX-4T 10-47 XENON1T 2 t-y LZ 15.6 t-y SI WIMP-nucleon cross section (cm XENONnT 20 t-y 10-48 200 t-y xenon (DARWIN or PandaX-30T) 10-49 Neutrino coherent scattering 10-50 1 10 102 103 WIMP mass (GeV/c2) *Figure taken from arxiv:1709.00688 This work is supported by grants from the Na- FIG. 4. The projected sensitivity (dashed curves) on the spin- tional Science Foundation of China (Nos. 11435008, independent WIMP-nucleon cross-sections of a selected num- ber of upcoming and planned direct detection experiments, 11455001, 11505112 and 11525522), a grant from the including XENON1T [34], PandaX-4T, XENONnT [34], Ministry of Science and Technology of China (Grant No. LZ [35], DARWIN [36] or PandaX-30T, and SuperCDMS [56]. 2016YFA0400301), and in part by the Chinese Academy Currently leading limits in Fig. 1 (see legend), the neutrino of Sciences Center for Excellence in Particle Physics ‘floor’ [20], and the post-LHC-Run1 minimal-SUSY allowed (CCEPP), the Key Laboratory for Particle Physics, As- contours [21] are overlaid in solid curves for comparison. The trophysics and Cosmology, Ministry of Education, and di↵erent crossings of the experimental sensitivities and the Shanghai Key Laboratory for Particle Physics and Cos- 2 neutrino floor at around a few GeV/c are primarily due to mology (SKLPPC). Finally, we thank the Hong Kong di↵erent threshold assumptions. Hongwen Foundation for financial support. [1] G. Bertone, D. Hooper, and J. Silk, Phys. Rept. 405, [14] A. Dedes, I. Giomataris, K. Suxho, and J. D. Vergados, 279 (2005), arXiv:hep-ph/0404175 [hep-ph]. Nucl. Phys. B826,148(2010), arXiv:0907.0758 [hep-ph]. [2] C. Savage, K. Freese, and P. Gondolo, Phys. Rev. D74, [15] R. J. Gaitskell, Ann. Rev. Nucl. Part. Sci. 54,315(2004). 043531 (2006), arXiv:astro-ph/0607121 [astro-ph]. [16] R. Bernabei et al., Eur. Phys. J. C73,2648(2013), [3] G. Jungman, M. Kamionkowski, and K. Griest, Phys. arXiv:1308.5109 [astro-ph.GA]. Rept. 267,195(1996), arXiv:hep-ph/9506380 [hep-ph]. [17] C. E. Aalseth et al. (CoGeNT), Phys. Rev. D88,012002 [4] M. C. Smith et al., Mon. Not. Roy. Astron. Soc. 379,755 (2013), arXiv:1208.5737 [astro-ph.CO]. (2007), arXiv:astro-ph/0611671 [astro-ph]. [18] G. Angloher et al., Eur. Phys. J. C72,1971(2012), [5] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38,1440 arXiv:1109.0702 [astro-ph.CO]. (1977). [19] R. Agnese et al. (CDMS), Phys. Rev. Lett. 111,251301 [6] F. Wilczek, Phys. Rev. Lett. 40,279(1978). (2013), arXiv:1304.4279 [hep-ex]. [7] J. E. Kim, Phys. Rept. 150,1(1987). [20] J. Billard, L. Strigari, and E. Figueroa-Feliciano, Phys. [8] D. J. E. Marsh, Phys. Rept. 643,1(2016), Rev. D89,023524(2014), arXiv:1307.5458 [hep-ph]. arXiv:1510.07633 [astro-ph.CO]. [21] E. A. Bagnaschi et al., Eur. Phys. J. C75,500(2015), [9] J. M. Gaskins, Contemp. Phys. 57,496(2016), arXiv:1508.01173 [hep-ph]. arXiv:1604.00014 [astro-ph.HE]. [22] J. Angle et al. (XENON), Phys. Rev. Lett. 100,021303 [10] J. D. Lewin and P. F. Smith, Astropart. Phys. 6,87 (2008), arXiv:0706.0039 [astro-ph]. (1996). [23] E. Aprile et al. (XENON100), Phys. Rev. Lett. 111, [11] L. E. Strigari, New J. Phys. 11,105011(2009), 021301 (2013), arXiv:1301.6620 [astro-ph.CO]. arXiv:0903.3630 [astro-ph.CO]. [24] D. S. Akerib et al. (LUX), Phys. Rev. Lett. 112,091303 [12] A. Gutlein et al., Astropart. Phys. 34,90(2010), (2014), arXiv:1310.8214 [astro-ph.CO]. arXiv:1003.5530 [hep-ph]. [25] D. S. Akerib et al. (LUX), (2015), arXiv:1512.03506 [13] F. Ruppin, J. Billard, E. Figueroa-Feliciano, and L. Stri- [astro-ph.CO]. gari, Phys. Rev. D90,083510(2014), arXiv:1408.3581 [26] A. Tan et al. (PandaX-II), Phys. Rev. Lett. 117,121303 [hep-ph]. (2016), arXiv:1607.07400 [hep-ex]. WIMP searches 5 -37 ACKNOWLEDGMENTS 10 -38 10 PandaX-II 2016 10-39 LUX 2016 ) 2 10-40 CDMSLite 2015 CRESST-II 2015 10-41 10-42 -43 10 SuperCDMS Post LHC1 mSUSY constraint 1700 kg-days 10-44 10-45 -46 10 6 t-y PandaX-4T 10-47 XENON1T 2 t-y LZ 15.6 t-y SI WIMP-nucleon cross section (cm XENONnT 20 t-y 10-48 200 t-y xenon (DARWIN or PandaX-30T) ? 10-49 Neutrino coherent scattering 10-50 1 10 102 103 WIMP mass (GeV/c2) *Figure taken from arxiv:1709.00688 This work is supported by grants from the Na- FIG. 4. The projected sensitivity (dashed curves) on the spin- tional Science Foundation of China (Nos. 11435008, independent WIMP-nucleon cross-sections of a selected num- ber of upcoming and planned direct detection experiments, 11455001, 11505112 and 11525522), a grant from the including XENON1T [34], PandaX-4T, XENONnT [34], Ministry of Science and Technology of China (Grant No. LZ [35], DARWIN [36] or PandaX-30T, and SuperCDMS [56]. 2016YFA0400301), and in part by the Chinese Academy Currently leading limits in Fig. 1 (see legend), the neutrino of Sciences Center for Excellence in Particle Physics ‘floor’ [20], and the post-LHC-Run1 minimal-SUSY allowed (CCEPP), the Key Laboratory for Particle Physics, As- contours [21] are overlaid in solid curves for comparison. The trophysics and Cosmology, Ministry of Education, and di↵erent crossings of the experimental sensitivities and the Shanghai Key Laboratory for Particle Physics and Cos- 2 neutrino floor at around a few GeV/c are primarily due to mology (SKLPPC). Finally, we thank the Hong Kong di↵erent threshold assumptions. Hongwen Foundation for financial support. [1] G. Bertone, D. Hooper, and J. Silk, Phys. Rept. 405, [14] A. Dedes, I. Giomataris, K. Suxho, and J. D. Vergados, 279 (2005), arXiv:hep-ph/0404175 [hep-ph]. Nucl. Phys. B826,148(2010), arXiv:0907.0758 [hep-ph]. [2] C. Savage, K. Freese, and P. Gondolo, Phys. Rev. D74, [15] R. J. Gaitskell, Ann. Rev. Nucl. Part. Sci. 54,315(2004). 043531 (2006), arXiv:astro-ph/0607121 [astro-ph]. [16] R. Bernabei et al., Eur. Phys. J. C73,2648(2013), [3] G. Jungman, M. Kamionkowski, and K. Griest, Phys. arXiv:1308.5109 [astro-ph.GA]. Rept. 267,195(1996), arXiv:hep-ph/9506380 [hep-ph]. [17] C. E. Aalseth et al. (CoGeNT), Phys. Rev. D88,012002 [4] M. C. Smith et al., Mon. Not. Roy. Astron. Soc. 379,755 (2013), arXiv:1208.5737 [astro-ph.CO]. (2007), arXiv:astro-ph/0611671 [astro-ph]. [18] G. Angloher et al., Eur. Phys. J. C72,1971(2012), [5] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38,1440 arXiv:1109.0702 [astro-ph.CO]. (1977). [19] R. Agnese et al. (CDMS), Phys. Rev. Lett. 111,251301 [6] F. Wilczek, Phys. Rev. Lett. 40,279(1978). (2013), arXiv:1304.4279 [hep-ex]. [7] J. E. Kim, Phys. Rept. 150,1(1987). [20] J. Billard, L. Strigari, and E. Figueroa-Feliciano, Phys. [8] D. J. E. Marsh, Phys. Rept. 643,1(2016), Rev. D89,023524(2014), arXiv:1307.5458 [hep-ph]. arXiv:1510.07633 [astro-ph.CO]. [21] E. A. Bagnaschi et al., Eur. Phys. J. C75,500(2015), [9] J. M. Gaskins, Contemp. Phys. 57,496(2016), arXiv:1508.01173 [hep-ph]. arXiv:1604.00014 [astro-ph.HE]. [22] J. Angle et al. (XENON), Phys. Rev. Lett. 100,021303 [10] J. D. Lewin and P. F. Smith, Astropart. Phys. 6,87 (2008), arXiv:0706.0039 [astro-ph]. (1996). [23] E. Aprile et al. (XENON100), Phys. Rev. Lett. 111, [11] L. E. Strigari, New J. Phys. 11,105011(2009), 021301 (2013), arXiv:1301.6620 [astro-ph.CO]. arXiv:0903.3630 [astro-ph.CO]. [24] D. S. Akerib et al. (LUX), Phys. Rev. Lett. 112,091303 [12] A. Gutlein et al., Astropart. Phys. 34,90(2010), (2014), arXiv:1310.8214 [astro-ph.CO]. arXiv:1003.5530 [hep-ph]. [25] D. S. Akerib et al. (LUX), (2015), arXiv:1512.03506 [13] F. Ruppin, J. Billard, E. Figueroa-Feliciano, and L. Stri- [astro-ph.CO]. gari, Phys. Rev. D90,083510(2014), arXiv:1408.3581 [26] A. Tan et al. (PandaX-II), Phys. Rev. Lett. 117,121303 [hep-ph]. (2016), arXiv:1607.07400 [hep-ex]. Challenges for sub-GeV DM 3 Low kinetic energy: v 10− ⇠ 6 K 10− m <keV ⇠ χ Challenges for sub-GeV DM Neutrino “floor” Goodman & Witten 3 Low kinetic energy: v 10− ⇠ 6 K 10− m <keV ⇠ χ Large background: Ideas do exist Phys. Rev. D 90, 083510 (2014) how to go beyond this “floor” (directional, annual modulation, etc), but the pragmatic issue is still how to get there Jianglai Liu Pheno 2017 7 Many strategies ‣ Search for electron scattering ‣ Accelerator searches ‣ New targets … Many strategies ‣ Search for electron scattering ‣ Accelerator searches ‣ New targets … Searching for boosted dark matter from Supernovae Outline ‣ Model ‣ Source: Supernovae ‣ Computing fluxes and projected sensitivity ‣ Conclusion and future directions Dark photon portal µ µ⌫ A0 χγ¯ χ + ✏F 0 F L ⊃ µ µ⌫ χ A0 γ SM ϵ χ¯ Dark photon portal µ µ⌫ A0 χγ¯ χ + ✏F 0 F L ⊃ µ µ⌫ χ A0 γ SM ϵ χ¯ mA0 & 200 MeV >mχ g e✏ d χγ¯ χJ µ L ⊃ m2 µ EM A0 Dark photon portal g e✏ 4 d µ 2 mχ χγ¯ µχJ y = ↵ ✏ L ⊃ m2 EM d m A0 ✓ A0 ◆ ↵y σ 2 ⇠ mχ parameter space in these models corresponds to DM-mediator coupling strengths that are SM-like.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    46 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us