Differential and Integral Calculus, with Examples and Applications

Differential and Integral Calculus, with Examples and Applications

TARY TREATISE DIFFERENTIAL AND INTEGRAL AL C CULUS, W ITH EXA MP LES A ND AP PLICA TIONS. B . N S. GEOEGE A . OSB OR E , , PROFESSOR OF MATH EMATIC S IN TH E M ASSACHU SETTS INSTITUTE O F T ECHNOLO GY . H HE TH CO . PUBL S ERS . A D. C , I BOSTON NEW YORK C HICA GO 1903 C OPYR IGHT 1891 , , B B Y GEORGE A . O S ORNE REFA E P C . T IS k n n as a x -b k co and scien H wor , i te ded te t oo for lleges tific c ba o n m m as m s hools , is sed the ethod Of li its , the ost rigorou s and most intelligible form o f presenti ng the first Th e m o f m h a principles Of the s ubject . ethod li its s also the important advantage o f being a familiar method ; for it is n o w so generally introduc ed in the study o f the more ele m n ar anc ma ma c a u n ma be e t y br hes Of the ti s , th t the st de t y assumed to b e fully c onvers ant with it o n beginning the Differential Calculus . o mu a f n a n in The rules r for l e for di fere ti tio Chapter III . in o n e c m i n m a x -b k in b n differ respe t fro those si il r te t oo s, ei g x in m u n a Of x u b n an unc n e pressed ter s Of i ste d , ei g y f tio T are u c a cab all x n o f x. hey th s dire tly ppli le to e pressio s, withou t the aid o f the u sual theorem c oncernin g a function o f a function . A ac u n c f n a n u n fter q iri g the pro esses of di fere ti tio , the st de t i n a V . n uc n a n a n as a Ch pter is i trod ed to the differe ti l ot tio , c onvenient abbreviation o f the c orresponding expression s by n T n a n h a m an dvan differential c oefficie ts . his ot tio s ifest a tages i n the stu dy Of the Integral Calculus an d in its n applicatio s . I n u n u In Chapter X . a d subseq e t pages I have introd ced for 8 Pa a n a o n n a n — c has c n rti l Differe ti ti the ot tio 7 whi h re e tly 6a: n c ome into such ge eral u s e . The chapters On Maxima and Minima h ave been pl aced a a ca n cu as c n a n a fter the ppli tio s to rves , the o sider tio Of th t s ubject is muc h simplified by representi ng the function by n u M x m M e ak n a Of a c . a a and n ma ma b the ordi te rve i i i y t e , ua a an a mm a a C a if desired, with eq l dv t ge i edi tely fter h pter III X . u k m In a X . n a Ca c u a a n b Ch pter , I tegr l l l s, I h ve t e the pro le o f n n M m n n a o f a an a a as a b fi di g the o e t of I erti pl e re , etter illustration o f double i ntegration than that Of finding the The u n m a c m n n area itself. st de t ore re dily o prehe ds the i de n Of a: an d in ub n a pendent variatio y the do le i tegr l, 2 x dx d an in doc d . ( yfi y, th y A a o f a XII n a Ca cu u are d few p ges Ch pter , I tegr l l l s, evoted to a description o f the Hyperbolic Functions together with f n a and a c m a n ma c o r their dif ere ti ls, o p riso is de with the responding Circular Functions . E A . O B R . G . S O N BO TON 1895. S , NT C ONTE S. DIFFERENTIAL CALCULUS. CHAPTER I . FUNCTIONS. Definitio n and Classificatio n o f Functio ns No tatio n Of Emotio n Exam les s . p CHAPTER II . DI ERENTIA E I IE T FF L CO FF C N . mi In r m n Li t . c e e t - m l Diff r n i l ffi i nt . Ex a es 8 10 . e e t a Co e c e p I CHAPTER I I. E DIFFER NTIA TION. l r i Fun tio ns Exam e —2 Differentiatio n o f A geb a c c . pl s 10 1 Diff renti ti n o f Lo arithmic and Ex o nential Functio e a o g p ns . Examples iffer n i io n Of Tri o no metric Fun ctio ns Exam les D e t at g . p . iff r f n r ri n m ri F n i n Ex D e entiatio n o I ve se T go o et c u ct o s . — amples 32 3 7 21 22 Differentiatio n o f In erse Functio n and Functio n Of a , . v Ex m l 3 -40 Functio n . a p es 7 CHAPTER IV. E I E DI ERENTIATI N SUCC S S V FF O . 23 24 . Definiti n nd N t i n , o a o at o 25 . The h i r ffi i Ex m l nt D ffe ential Co e c ent . a p e s ’ 26 . Leibnitz Th r m Ex m l s eo e . a p e s vi TE T CON N S . CHAPTER V. DI EREN I FF T ALS. A M E. Difi erentials as relate d t o Differential Co efficients Differentiatio n b y Differentials Successi e Differentials Ex am les v . p I CHAPTER V . IMP I IT UN TI NS L C F C O . iff r nti tio n o f Im licit Fun i E - D e e a p ct o ns . xamples 52 54 CHAPTER VII . EXPA SI N OF UN TI S N O F C ON . ri ’ Th o r m Exam l Maclau n s e e . p es ’ Ex m l Taylo r s Th eo re m. a p es ’ Rigo ro us Pro o f Of Taylo r s Theo rem ’ ’ Remainder in Taylo r s and Maclaurin s Th eo rems CHAPTER VIII . I DETERMINATE RMS N FO . u f Fra tio n Limiting Val e o 3. c Evaluatio n o f 3. Examples E m le E aluatio n o f 0 co co 00 . xa s v g, , p rm Exam les Evaluatio n o f Exp o nential Fo s . p CHAPTER IX. N PA RTIAL DIFFERENTIATIO . tial Differential C o effi cients Of First Order . Exam 9 6 . Par 5 , 0 — Hi h er rd r Ex m Differential Co efficients o f O e s . a 61 63 . Partial g — ples 80 82 Fun tio ns Of Se eral Variables To ta l Difi erential Of c v . Examples Ex m le s Co nditio n fo r an Exact Differential . a p n tio ns Differentiatio n Of Implicit Fu c . ’ Taylo r s Th e o rem fo r Several V ariables S ii CONTENT . v CHAPTER X . CHANGE OF VARIABLES IN DIFFERENTIAL E COEFFICI NTS. Ch angi ng fro m so to y Ch anging fro m y to z h an in fro m to z Ex am les C g g ac . p CHAPTER XI . REPRESENTATI OF VA RI US URVES ON O C . 4- 85 Rectan ul ar Co -o rdinates 7 . g — - 86 93 . Po lar Co o rdinates CHAPTER XII . D E R E TAN EN D IR TI F U V T AN RMA . C ON O C . G NO L A SYMPTOTES. - i 4 97 Direct o n o f urve ub tan ent and ubno rmal . 9 . C . S g S Example s 98 Differential o effi i n h A r , C c e t o f t e c 99 E uatio n o f th e Tan ent and No rmal Exam les . q g . p 100- 106 A s m to tes Exam les . y p . p CHAPTER XIII . D E N IR TI OF URVA TURE. P I TS OF I F EX I C O C O N N L ON. 10 —109 Directio n Of ur ur 7 . C vat e 110 . Po ints o f Infi exi o n Ex am l . p es CHAPTER XIV. URVATURE. IR E OF URVATURE EV C C CL C .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    321 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us