THE UNIVERSITY OF QUEENSLAND Bachelor of Engineering Thesis Mine Production Improvement through Haulage Optimisation Student Name: Matthew CORNELIUS Course Code: MINE4123 Supervisor: Associate Professor Mehmet Kizil Submission date: 9 October 2017 A thesis submitted in partial fulfilment of the requirements of the Bachelor of Engineering degree in Mining Engineering UQ Engineering Faculty of Engineering, Architecture and Information Technology i ABSTRACT A drop in commodity price forces companies to increase production yet, in doing so, they lose focus of maintaining an efficient operation. An operation that is not meeting production targets should first analyse the current assets prior to purchasing new ones to understand where the shortfalls are present and if there are any improvements that can be implemented. The project aims to close the gap between underperforming operations by adopting an end-to-end approach, considering all inputs and each associated effect and understanding variations within the project that may be controllable or uncontrollable. If operations more often reach the best practice benchmark they become more competitive in today’s market and ensure a more viable operation. The Central Queensland coal mining operation produces 11Mtpa coal and 30Mbcm annually utilising a trucking fleet of 12 and two Hitachi EX5500 excavators in backhoe configuration with a bucket capacity of 27m3. The site has control over the load, haul and dump processes and thus it is imperative these are optimised such that maximum profitability is attained. Current site practices involve working two 12 hours shifts where over the course of the shift tasks are recorded manually using the reporting software InfoMINE and adjusted using Vital Information Management Systems (VIMS) and survey volume adjustments. The analysis techniques used were created in accordance with the Time Usage Model (TUM) adopted by the company in January 2017. The analysis found that utilisation affects the operation more than availability constraints. Alongside this during the six month period analysed 131 failure events occurred between the two primary digging units averaging two hours attendance per failure. This drastically reduced the mean time between failures (MTBF) metric and limits the operation significantly. Major delays have been attributed to maintenance and weather (uncontrollable) and meal breaks and shift changeover (controllable). Following the analysis and suggested improvements the operation can reduce costs attributed to delays by $2M annually, increase loading time by 3%, increase overall mine productivity by 5% and reduced the delays within the overall system by 2%. This in turn will increase the accuracy of reporting and increase the technical and economic viability of the operation. ii CONTENTS ABSTRACT...…………………………………………………………………………….......I LIST OF FIGURES……………………………………………………………….………...VI LIST OF TABLES..……………………………………………………………….……….VIII 1 INTRODUCTION…………………………………………………………………….1 1.1 BACKGROUND………………………………………………………………1 1.2 AIMS AND OBJECTIVES……………………………………………………2 1.3 SCOPE………………………………………………………………………...3 1.4 METHODOLOGY………………...…………………………………………..3 1.5 SIGNIFICANCE TO INDUSTRY……………….……………………………4 1.6 RISK MANAGEMENT………………………….……………………………5 1.7 FAILURE MODEL AND EFFECTS ANALYSIS………………………..…..5 1.7.1 Functional Failure……………….………………………………..…...5 1.1.2 Failure Modes……………………….…………………………..……..6 1.7.3 Risk Ranking…………………………………………………….……..6 1.7.4 Recommended Controls………………………………………….…….6 1.8 THESIS COMPLETION………….……………………………………….…..7 1.8.1 Site Visit………………….…..…………………………………….…..8 1.8.2 Contingency Plan……………………….…………………………..…9 1.9 PROJECT MANAGEMENT…….……………………………………….….11 1.9.1 Critical Path…………………………………………………….……11 1.9.2 Project Costs…………………………………………………………12 2 OPEN CUT MINING………………………………………………………………..13 2.1 STRIP MINING…………………………………………………………..….14 3 TRUCK AND SHOVEL OPERATIONS……………………………………….…16 3.1 EXCAVATION PROCESS…………………………………………………..17 3.2 EQUIPMENT………………………………………………………………...18 3.2.1 Rope Shovel…………………...……………………………………...18 3.2.2 Hydraulic Face Shovels………………………………………………20 3.2.3 Backhoe Excavators……………………………………….................21 iii 3.3 LOADING METHODS………………………………………………………22 3.3.1 Single Bench Loading…………………………………………….…..22 3.3.2 Double Bench Loading……………………………………………….22 3.3.3 Top Loading……………………………………………………..........23 3.4 TRUCK CYCLE TIME………………………………………………………24 3.5 EXCAVATOR CYCLE TIME……………………………………………….25 3.6 CYCLE TIME ANALYSIS…………………………………………………..28 3.6.1 Utilisation Impacts…………………………………………………...29 3.6.2 Match Factor………………………………………………………....30 3.6.3 Prioritisation and Usage………………………………………...…...31 3.6.4 Uncertainty…………………………………………………………...31 3.7 INDUSTRY EFFICIENCY EVALUATION…………………….…………..31 3.7.1 Utilisation of Truck Fleet……………………………………..………33 3.7.2 Utilisation of Major Digging Equipment……………………………..34 3.7.3 Delay Reduction…………………………………………………..….35 4 DIGGING CONDITIONS…………………………………………………………..38 4.1 DIGGABILITY………………………………………………………………39 4.2 FILL FACTOR……………………………………………………………….40 4.3 FRAGMENTATION………………………………………………………...41 4.4 FINES GENERATION………………………………………………………43 4.5 MUCKPILE CHARACTERISTICS…………………………………………44 5 TIME USAGE MODEL…………………………………………………………….45 5.1 ASSET PERFORMANCE METRICS……………………………………….48 5.1.1 Annualised SMU Hours………………………………………………48 5.1.2 Annualised Work Hours………………………...…………………….48 5.1.3 Utilisation of Available Time………………………...……………….48 5.1.4 Field Utilisation………………………………...…………………….49 5.1.5 Physical Availabilty………………………………...………………...49 5.1.6 Mechanical Availability……………………………..………………..49 5.2 MEASURING PRODUCTIVITY……………………………………………49 5.2.1 AVAILABILITY…………………………………………………….51 5.2.2 UTILISATION……………………………………………………….51 iv 5.2.3 OVERALL EQUIPMENT EFFECTIVENESS (OEE)………………52 5.2.4 PRODUCTION RATE……………………………………………….53 6 COMPUTER SIMULATION……………………………………………………….55 6.1 CURRENT TECHNOLOGY………………………………………………...56 6.1.1 Talpac (RPMGlobal)………………………………………………....56 6.1.2 Caterpillar Fleet Production Cost (FPC)…………………………….57 6.1.3 Arena (Rockwell Software)…………………………………...………58 6.2 FLEET MANAGEMENT SYSTEMS………………………………………..59 6.3 HAULAGE OPTIMISATION THROUGH SIMULATION………………...60 7 COMPANY A MINING OPERATION…………………………………………….64 7.1 PERFORMANCE METRICS...……………………………………………...65 7.2 WORKING CONDITIONS..………………………………………………...66 7.3 INFORMATION MANAGEMENT SYSTEMS………………………….....67 7.4 CURRENT PRODUCTIVITY RATES……………………………………...69 8 PROCEDURE…………….………………………………………………………..71 8.1 DATA COLLECTION……………………………………………………….71 8.2 CYCLE TIME INTERPRETATION AND PROCESS….…………………...74 8.3 ASSET PERFORMANCE METRICS CALCULATIONS………………….76 9 TIME USAGE ANALYSIS.………………………………………………………..78 9.1 EX5500S TIME USAGE ANALYSIS……………………………………….78 9.2 CAT 789S TIME USAGE ANALYSIS .….……………………….………...79 10 DELAY ANALYSIS……….………………………………………………………..81 10.1 LOST TIME DELAYS……………………………………………………….81 10.2 CONTROLLABLE VERSUS UNCONTROLLABLE FACTORS…….…....83 10.3 INTERNAL OPERATING DELAYS…………………………………….….84 11 ASSET TIME CAPTURE SYSTEM…...………………………………………….89 11.1 TIME COMPONENT ANALYSIS………………………………………......89 11.2 PHYSICAL AVAILABILITY..……………………………………………...89 11.2.1 EX2320………………………………….…………………………....90 v 11.2.2 EX2321……………………………………………………………….90 11.2.3 CAT789s……………………………………………………...………91 11.3 UTILISATION OF AVAILABLE TIME.…………………………………...91 11.4 FIELD UTILISATION……..………………………………………………...92 11.5 MEAN TIME BETWEEN FAILURES.……………………………………...94 11.5.1 EX2320……………………………………….……………………....95 11.5.2 EX2321……………………………………………………………….96 12 CYCLE TIME ANALYSIS...……………………………………………………….97 12.1 CYCLE TIME BREAKDOWN……………………………………………...98 12.1.1 Travel Time.………………………………………………………......99 12.1.2 Load Time………………………………………………...……………...99 12.1.3 Spot Time…………………….…………………………………...……..99 12.1.2 Queue Time…………………………………..…………………………...99 12.1.3 Wait Time………………………………………………………...……100 12.2 TIME DELAYS PER CYCLE………………………………………………100 12.3 DELAY TIME WITHIN SHIFT…………………………………………….101 13 IMPROVEMENT SUMMARY…………………………...……………………….102 13.1 TIME USAGE ANALYSIS...…………………………………………….....103 13.2 DELAY ANALYSIS..………………………………………………............103 13.3 ASSET TIME CAPTURE SYSTEM………………………………….….....104 13.4 CYCLE TIME ANALYSIS………………………………………….……...106 14 CONCLUSIONS………………………………………………………………….108 15 RECOMMENDATIONS………………………………………………………….112 16 REFERENCES…………………………………………………………………...113 APPENDIX 1: EFFECT OF UTILISATION……………………………………………120 APPENDIX 2: INTERNAL OPERATING DELAY ANALYSIS.………………………121 vi LIST OF FIGURES Figure 1: Open Pit Mining Cycle (Anglo American, 2016) ..................................................... 13 Figure 2: Typical Mining Geometry (Kumar, 2016) ............................................................... 14 Figure 3: Strip Mining Process (Gaukartifact, 2015) .............................................................. 15 Figure 4: Mining Operations Australia (Choy et al. 2010) ...................................................... 16 Figure 5: Dragline Excavation Process (Mine Surveyor, 2016) .............................................. 17 Figure 6: Truck and Shovel Excavation Process ..................................................................... 18 Figure 7: Rope Shovel Digging Environment (Mine Surveyor, 2016) .................................... 19 Figure 8: Face Shovel Digging Environment (O’Brien, 2014) ................................................ 20 Figure 9: Backhoe Excavator Digging Environment (Mine Surveyor, 2016) ......................... 21 Figure 10: Single Bench Loading (Hitachi, 2016)................................................................... 22 Figure 11:
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages130 Page
-
File Size-