Universal Gate - NAND Digital Electronics 2.2 Intro to NAND & NOR Logic

Universal Gate - NAND Digital Electronics 2.2 Intro to NAND & NOR Logic

Universal Gate - NAND Digital Electronics 2.2 Intro to NAND & NOR Logic Universal Gate – NAND This presentation will demonstrate • The basic function of the NAND gate. • How a NAND gate can be used to replace an AND gate, an OR gate, or an INVERTER gate. • How a logic circuit implemented with AOI logic gates can Universal Gate – NAND be re-implemented using only NAND gates. • That using a single gate type, in this case NAND, will reduce the number of integrated circuits (IC) required to implement a logic circuit. Digital Electronics AOI Logic NAND Logic 2 More ICs = More $$ Less ICs = Less $$ NAND Gate NAND Gate as an Inverter Gate X X X (Before Bubble) X Z X Y X Y X Z X Y X Y Z X Z 0 0 1 0 1 Equivalent to Inverter 0 1 1 1 0 1 0 1 1 1 0 3 4 Project Lead The Way, Inc Copyright 2009 1 Universal Gate - NAND Digital Electronics 2.2 Intro to NAND & NOR Logic NAND Gate as an AND Gate NAND Gate as an OR Gate X X Y Y X X Z X Y X Y Y Z X Y X Y X Y Y NAND Gate Inverter Inverters NAND Gate X Y Z X Y Z 0 0 0 0 0 0 0 1 0 0 1 1 Equivalent to AND Gate Equivalent to OR Gate 1 0 0 1 0 1 1 1 1 1 1 1 5 6 NAND Gate Equivalent to AOI Gates Process for NAND Implementation 1. If starting from a logic expression, implement the design with AOI logic. AND OR INVERTER 2. In the AOI implementation, identify and replace every AND,OR, and INVERTER gate with its NAND equivalent. 3. Redraw the circuit. 4. Identify and eliminate any double inversions (i.e., back- to-back inverters). 5. Redraw the final circuit. 7 8 Project Lead The Way, Inc Copyright 2009 2 Universal Gate - NAND Digital Electronics 2.2 Intro to NAND & NOR Logic NAND Implementation NAND Implementation Solution – Step 2 Example: Identify and replace every AND,OR, and INVERTER gate with its Design a NAND Logic Circuit that is equivalent to the AOI circuit NAND equivalent. shown below. B C A C 9 10 NAND Implementation NAND Implementation Solution – Step 3 Solution – Step 4 Redraw the circuit. Identify and eliminate any double inversions. 11 12 Project Lead The Way, Inc Copyright 2009 3 Universal Gate - NAND Digital Electronics 2.2 Intro to NAND & NOR Logic NAND Implementation Solution – Step 5 Proof of Equivalence Redraw the circuit. C B C B C A C Z B C A C A C Z B C A C 13 14 AOI vs. NAND IC Type Gates Gate / IC # ICs IC Type Gates Gate / IC # ICs 74LS04 1 6 1 74LS00 4 4 1 74LS08 2 4 1 Total Number of ICs → 1 74LS32 1 4 1 Total Number of ICs → 3 15 Project Lead The Way, Inc Copyright 2009 4 .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us