Appendices Appendix A

Appendices Appendix A

Appendices Appendix A Character Tables* of the More Common Symmetry Point Groups 1. Cyclic Groups A C2 E C2 A 1 1 z R z xz., y2, Z2, xy B 1 -1 x,y Rx' R y YZ, zx 2 C3 E C3 C3 W = exp (2ni/3) A 1 1 1 Z Rz .~ + y2, Z2 1 W w2 xz. - y2, xy, x,y E{ 1 w* W*2 } } Rx' Ry } yz, zx 3 C4 E C4 C2 c4 2 A 1 1 1 1 z R z x + I, Z2 B 1 -1 1 -1 r -I,xy 1 i -1 -i E { x,y Rx' Ry YZ,zx 1 -i -1 i } } } • Adapted from 1. Gutman and O.E. Polansky: Mathematical Concepts in Organic Chemistry. Springer, Berlin Heidelberg New York London Paris Tokyo 1986. Appendix 5, pp. 184-199 284 Appendix A. Character Tables ofthe More Common Symmetry Point Groups Cs E Cs Cs2 Cs3 Cs4 W = exp (271ij5) I A 1 1 1 1 1 - i R% xl +.1, Z2 1 W w2 w3 w4 { } x,y } yz,zx E1 1 w* W*2 W*3 W*4 }R", Ry 1 w2 w4 W w3 } xl -.I, xy E2 { 1 W*2 W*4 w* W*3 2 S C6 E C6 C3 C2 C3 C6 W = exp (271ij6) A 1 1 1 1 1 1 Z R% X2 +.I,z2 B 1 -1 1 -1 1 -1 1 W w1 -1 -w _w2 E1 { 1 w* W*2 -1 -w* _W*2 } x,y } R", Ry } YZ,zx 1 w2 w4 1 w2 w4 Ez { 1 W*2 W*4 1 W*2 W*4 } xl -.I, xy 2. Cnv Groups C2v E C2 U V Ud zx yz Al 1 1 1 1 z xl, y2, Z2 A2 1 1 -1 -1 R% xy B1 1 -1 1 -1 x Ry zx B2 1 -1 -1 I Y R yz " I C3v E 2C3 3uv Al 1 1 1 z xl +.1, Z2 A2 1 I -1 R% -.I, xy E 2 -1 0 {.r x,y I R", Ry yz,zx Appendix A. Character Tables of the More Common Symmetry Point Groups 285 c4V E 2C4 C2 2a v 2ad AI 1 1 1 1 1 Z X2 +/,Z2 A2 1 1 1 -1 -1 Rz 2 8 1 1 -1 1 1 -1 x _/ 8 2 1 -1 1 -1 1 xy E 2 0 -2 0 0 x,y RX,R), YZ,ZX C5v E 2C5 2c; 5a,. <p = 2rr:5 AI 1 1 1 1 Z :xl + /, .::2 A2 1 1 1 -1 R z EI 2 a b 0 x,y Rx ' Ry yz, ZX E2 2 b a 0 :xl -/, xy I a = 2 cos <p = 2 cos 4<p = (0 - 1)/2 = 0.618034, b = 2cos2<p = -(0 + 1)/2 = -1.618034. C6v E 2C6 2C3 C2 3a v 3ad AI 1 1 1 1 1 1 Z :xl + /, Z2 A2 1 1 1 1 -1 -1 R z 8 1 1 -1 1 -1 1 -1 82 1 -1 1 -1 -1 1 EI 2 1 -1 -2 0 0 x,y Rx ' Ry y.::, zx E2 2 -1 -1 2 0 0 xZ-/,xy 3. Cnh Groups C1h E ah Clh = es xy A' 1 1 X,y R x2, y2, Z2, xy AU z 1 -1 z R x ' R y yz,zx 286 Appendix A. Character Tables ofthe More Common Symmetry Point Groups C2h E C2 i (jh 2 Ag 1 1 1 1 R z x , y2, Z2, xy A u 1 1 -1 -1 z 8g 1 -1 1 -1 R x ' Ry yz, zx 8 u 1 -1 -1 1 x,y 2 S2 C3h E C3 C3 (jh S3 3 A' 1 1 1 1 1 1 Rz :x? + f, r A" 1 1 1 -1 -1 -1 z 1 W w2 1 W w2 E' { } x,y }:x? - f, xy 1 w* W*2 1 w* W*2 1 W w2 -1 -w _w2 Eil { } yz, zx 1 w* W*2 -1 -w* _W*2 }Rx' Ry 3 S3 C4h E C4 C2 C4 i 4 (jh S4 Ag 1 1 1 1 1 1 1 1 R z :x? + f, r A u 1 1 1 I -1 -1 -1 -1 z 8 g 1 -1 1 -1 1 -1 1 -1 :x?-f,xy 8 u 1 -1 1 -1 -1 1 -1 1 1 i -1 -i 1 i -1 -i } YZ,zx Eg { 1 -i -1 i 1 -i -1 i } Rx ' Ry 1 i -1 -i -1 -i 1 i } x, Y Eu { I -i -1 i -1 i 1 -i > 2 3 '0 C5h E C5 C C (J/, S5 S; S3 W = exp (2n i/5) '0 5 5 C! 5 ~ <tl ------~- ::; X 2 +y2,z2 8: A' I I I >< AU ~I --I ~I ~I ~l > 2 3 4 2 3 4 (1 w w w w W w w w R, P"' E; { W*2 w*3 W*4 W*2 W*3 W*4 }:~yl w* I w* ~ ~ w w 2 w 3 w 4 ~I ~(I) ~·ul ~W3 ~W4 M­ <tl } YZ,::X ..., Ei' { w* W*2 W*3 (1)*4 ~I ~w* __ W*2 ~W*3 __ W*4 } Rx ' R y 3 w 2 w 4 W w 3 u/ w 4 w W 0"~ E2 { }X2~y2,XY (0 W*2 W*4 w* W*3 w*Z W*4 w* W*3 cn o w Z w 4 W w 3 ~I --ol ~W4 ~w ~u/ ...., E2' { w*Z W*4 W*3 ~I ~W*2 ~W*4 ~w* ~W*3 ;. w* <tl s;: o -------_. Iil (1 C6h E C C C C5 S2 S5 W = cxp (2n i/6) 6 3 2 C; 6 3 6 (J/, S'" S3 S~ o A ~ Z2 ::; 9 1 R z + jl, r:n A 1 ~I ~I -I ~I ~I --I Z " '<: 8 g ~I ~I ~l I ~l ~I I ~I S S <tl Bu ~l ~I ~I ~I ~l 1 -I M­ ..., w w 2 ~I ~W ~W2 1 (j) U)2 ~l ~w ~wz '<: E 10 { } Rx ' Rr } yz, ZX ""0 w* w*Z ~l ~w* ~W*2 w* (j)*Z ~l ~w* ~w*Z 9. ::; W w Z ~l ~w ~W2 ~l ~w ~W2 w w 2 M- } X, y CJ EI" { w'~ w*Z ~l ~w* ~w*Z ~l ~w* ~w*Z w* w*Z ..., w Z w 4 1 w 2 w 4 w 4 w 2 w 4 g 0./ 2 '0 EZg { } x ~ y2, xy W*2 W*4 W*2 W*4 1 W*2 W*4 W*2 W*4 '" w Z w 4 w 2 w 4 ~l ~wZ ~W4 ~l ~wZ ~W4 E2u { W*2 W*4 W*2 W*4 ~l ~W*2 ~W*4 ~l ~W*2 ~W*4 -l00"-' 288 Appendix A. Character Tables ofthe More Common Symmetry Point Groups 4. S2n Groups S2 E i S2 = Ci Ag 1 1 Rx ' Ry' R. x2,~,z2,xy,yz,zx A u 1 -1 x,y,z S3 S4 E S4 C2 4 A 1 1 1 1 R. _~ +~, Z2 B 1 -1 1 -1 z x2 _ y2, xy 1 i -1 -i } x,y } YZ,zx E{ 1 -i -1 i } Rx' Ry S6 E C3 C32 i S56 S6 I w = exp (2ni/3) A 1 1 1 1 1 1 R x2 + y2, z2 9 Au 1 1 1 -1 -1 -1 z 1 w ai 1 w w2 } x2 -/, xy, yz, zx Eg { 1 w* W*2 1 w* W*2 } Rx ' Ry I W w2 -1 -w -ai { }x,y Eu 1 w* W*2 -1 -w* _W*2 5. Dn Groups D2 E C2 C2 C2 D2 = V Z Y x A 1 1 1 1 x2, y2, Z2 -1 R xy BI 1 1 -1 z % B2 1 -1 1 -1 Y Ry zx B3 1 -1 -1 1 x R x YZ D3 E 2C3 3C2 AI 1 1 1 x2 + /, Z2 A2 1 1 -1 Z Rz 2 E 2 -1 0 x,y Rx' Ry x -/, xy, YZ, zx D4 E 2C~ C2 2C; 2C; AI 1 1 1 1 1 x2 + /, Z2 A2 1 1 1 -1 -1 Z R = 8 1 1 -1 1 1 -1 82 1 -I 1 -1 1 E 2 0 -2 0 0 x,y Rx ' R)' ~ -/, xy, yz, zx Ds E 2Cs 2C; 5C2 rp = 21[/5 AI 1 1 1 1 ~ +/,1 A2 1 1 1 -1 z Rz EI 2 a b 0 x,y Rx' R v yz, zx E2 2 b a 0 x2 -/, xy I a = 2 cos rp = 2 cos 4rp = (Vs - 1)/2 = 0.618034, b = 2 cos 2rp = -(Vs + 1)/2 = -1.618034. D6 E 2C6 2C3 C2 3C; 3C;' AI 1 1 1 1 1 1 x2 + /, Z2 A2 1 1 1 1 -1 -1 Rz 8 1 1 -1 1 -1 1 -1 8 2 1 -1 1 -1 -1 1 Z EI i 2 1 -1 -2 0 0 x,y Rx ' Ry yz, zx 2 Ez I 2 -1 -1 2 0 0 x _ y2, xy I 6. Dnd Groups D2d E 2S4 C2 2C; 2C;' Du = Vd AI 1 1 1 1 1 x 2 + /, Z2 A2 1 1 1 -1 -1 Rz 8 1 1 -1 1 1 -1 x2 -/ 8 2 1 -1 1 -1 1 z xy E 2 0 -2 0 0 x,y Rx' Ry yz, zx 290 Appendix A.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    29 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us