
Ceramic Nanotechnology Lecture 9 Functional Ceramic Nanoparticles Dr. rer. nat. Michael Maas Prof. Dr.-Ing. Kurosch Rezwan michael.maas@uni-bremen.de Keramische Werkstoffe und Bauteile - Advanced Ceramics Universität Bremen Am Biologischen Garten 2, IW3 D - 28359 Bremen Tel: +49 421 218 7451 Fax: +49 421 218 7404 http://www.ceramics.uni-bremen.de/ michael.maas@uni-bremen.de Universität Bremen 1 Ceramic Nanotechnology – L9 www.ceramics.uni-bremen.de ! Class Outline „Ceramic Nanotechnology“ 1. Introduction – Applications – Challenges 2. Fundamentals of Colloid and Interface Science Nanotechnology: 3. Particle Interactions in Colloidal Systems Background, 4. Characterization of Nano- and Microparticles Theory, 5. Colloidal Dispersions Methods 6. Rheology of Suspensions I 7. Rheology of Suspensions II Selected Examples 8. Biomineralization of Nanostructured Materials from the 9. Functional Ceramic Nanoparticles Frontier of 10. Powder Synthesis and Conditioning Science 11. Sol – Gel Technology and Hybrid Materials Applications 12. Shaping Ceramics I: Bulk Materials and Foams in Ceramics 13. Shaping Ceramics II: Thin Films 14. Summary Am 29.1. findet keine Vorlesungen statt! Stattdessen wird eine Wiederholungstunde direkt vor den Prüfungen angeboten. michael.maas@uni-bremen.de Universität Bremen 2 Ceramic Nanotechnology – L9 www.ceramics.uni-bremen.de ! From Powder to Materials Design Bulk Material In order to produce advanced ceramics we need the knowledge of powder and suspension technology! Surface Micro Patterning Surface Coatings Colloidal Crystals michael.maas@uni-bremen.de Universität Bremen 3 Ceramic Nanotechnology – L9 www.ceramics.uni-bremen.de Outline • Ultra-Ever Dry • Ferrofluids • Photocatalytic Titiania • Introduction: Microcapsules • Colloidosomes • Coacervation Mediated Mineralization • Carbon Based Nanomaterials michael.maas@uni-bremen.de Universität Bremen 4 Ceramic Nanotechnology – L9 www.ceramics.uni-bremen.de ! The Hydrophobic Effect: “Ultra-Ever Dry” michael.maas@uni-bremen.de Universität Bremen Ceramic Nanotechnology – L9 www.ceramics.uni-bremen.de ! “Ultra-Ever Dry”: How It Works michael.maas@uni-bremen.de Universität Bremen 6 Ceramic Nanotechnology – L9 www.ceramics.uni-bremen.de ! “Ultra Ever Dry”: How It Works Bottom Layer: Polyurethane coating as glue for the top layer Top Layer: Fluorinated fumed silica • fumed silica provides nanostructured surface • flourinated hydrocarbons provide hydrophobicity " superhydrophobic surface http://arstechnica.com/gadgets/2013/03/the-internet-demanded-partially-scientific-testing-of-ultraeverdry-in-hd/ michael.maas@uni-bremen.de Universität Bremen 7 Ceramic Nanotechnology – L9 www.ceramics.uni-bremen.de Outline • Ultra-Ever Dry • Ferrofluids • Photocatalytic Titiania • Introduction: Microcapsules • Colloidosomes • Coacervation Mediated Mineralization • Carbon Based Nanomaterials michael.maas@uni-bremen.de Universität Bremen 8 Ceramic Nanotechnology – L9 www.ceramics.uni-bremen.de ! Ferrofluids A ferrofluid is a liquid that becomes strongly polarised in the presence of a magnetic field. Ferro Fluid Glass plate Magnet michael.maas@uni-bremen.de Universität Bremen 9 Ceramic Nanotechnology – L9 www.ceramics.uni-bremen.de ! Ferrofluids Ferrofluids: magnetite (Fe3O4) nanoparticles, coated with surfactants Typical surfactants: • oleic acid (fatty acid, electrosteric) • tetramethylammonium hydroxide (electrostatic) • citric acid (electrostatic) • soy lecithin (phospholipid, electrosteric) michael.maas@uni-bremen.de Universität Bremen 10 Ceramic Nanotechnology – L9 www.ceramics.uni-bremen.de ! Ferrofluids Superparamagentism: • Particles are smaller than the magnetic domains • Brownian motion prevents magnetic orientation of the particles • External field " orientation of ferrofluids along field lines " ferromagnetism michael.maas@uni-bremen.de Universität Bremen 11 Ceramic Nanotechnology – L9 www.ceramics.uni-bremen.de ! Special Ferrofluids: Magnetorheological Fluids A magnetorheological fluid is a suspension of micrometre-sized magnetic particles in a carrier fluid, usually a type of oil. When subjected to a magnetic field, the fluid greatly increases its viscosity, to the point of becoming a viscoelastic solid. Thus the yield stress of the fluid can be controlled very accurately by varying the magnetic field intensity. The fluid's ability to transmit force can be controlled with an electromagnet. michael.maas@uni-bremen.de Universität Bremen 12 Ceramic Nanotechnology – L9 www.ceramics.uni-bremen.de ! Applications of Magnetorheological Fluids Automotive Primary Suspension Passenger Protection Knob & Detent Clutch Civil Engineering Seismic Protection Cable-Stayed Bridges Industrial Washing Machine Medical Prosthetic Joint Cancer Therapy michael.maas@uni-bremen.de Universität Bremen 13 Ceramic Nanotechnology – L9 www.ceramics.uni-bremen.de ! Frontiers in Science: Treatment of Cancer with Magnetic Iron Oxide Nanoparticles The new procedure involves coating nano iron oxide particles Fe3O4 Cancer Cells before (magnetite, Fe3O4, 3 – 15 nm) with an organic substance, such as the treatment sugar glucose, and injecting them into a malignant tumor. The tumor, which has a fast metabolism and correspondingly high energy needs, greedily sucks up the little particles masquerading as sugar pellets of a sort. Healthy cells, on the other hand, show little interest. Magnetic field heats up the nanoparticles inside the malignant tumor cells up to 45°C. Cancer Cells after Fe3O4-Nanoparticle Treatment [Jordan A, et al. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neuro-Oncol. 2006] [www.ccnanochem.de, UK Charite (Berlin)] michael.maas@uni-bremen.de Universität Bremen 14 Ceramic Nanotechnology – L9 www.ceramics.uni-bremen.de Outline • Ultra-Ever Dry • Ferrofluids • Photocatalytic Titania • Introduction: Microcapsules • Colloidosomes • Coacervation Mediated Mineralization • Carbon Based Nanomaterials michael.maas@uni-bremen.de Universität Bremen 15 Ceramic Nanotechnology – L9 www.ceramics.uni-bremen.de ! Photocatalytic Activity Semiconductors are useful candidate for photocatalysis, solar energy can be used to carry out chemical reactions including H2 fuel generation from water. Example: TiO2 nanoparticles http://www3.nd.edu/~kamatlab/research_photocatalysis.html michael.maas@uni-bremen.de Universität Bremen 16 Ceramic Nanotechnology – L9 www.ceramics.uni-bremen.de ! Photocatalytic Activity http://sahabatnanotech.blogspot.de/p/photocatalysis.html michael.maas@uni-bremen.de Universität Bremen 17 Ceramic Nanotechnology – L9 www.ceramics.uni-bremen.de ! Photocatalytic Activity Nano composites for enhanced photocatalysis with (A) semiconductor-semiconductor (B) semiconductor -metal (C) semiconductor-RGO hybrid architectures. michael.maas@uni-bremen.de Universität Bremen 18 Ceramic Nanotechnology – L9 www.ceramics.uni-bremen.de Outline • Ultra EverDry • Ferrofluids • Photocatalytic Titiania • Introduction: Microcapsules • Colloidosomes • Coacervation Mediated Mineralization • Carbon Based Nanomaterials michael.maas@uni-bremen.de Universität Bremen 19 Ceramic Nanotechnology – L9 www.ceramics.uni-bremen.de ! Drug Delivery Carriers http://www.nature.com/nrn/journal/v10/n9/full/nrn2685.html michael.maas@uni-bremen.de Universität Bremen 20 Ceramic Nanotechnology – L9 www.ceramics.uni-bremen.de ! Drug Delivery michael.maas@uni-bremen.de Universität Bremen 21 Ceramic Nanotechnology – L9 www.ceramics.uni-bremen.de ! Drug Delivery: EPR Effect Tumors have “leaky” blood vessels, which allow relatively large nano-sized drug carriers to enter. This is called Enhanced Permeability and Retention (EPR) Effect. Normal blood vessels are not “leaky” and nanoparticles are prevented from entering. This allows one to selectively target tumors. michael.maas@uni-bremen.de Universität Bremen 22 Ceramic Nanotechnology – L9 www.ceramics.uni-bremen.de ! Outlook Building block system for microcapsule design • inorganic nanoparticle shell • large molecule active agents: proteins • small molecule active agents: growth factors, antibiotics • superparamagnetic nanoparticles for mobility, triggered release and diagnostics • fluorescent nanoparticles for diagnostics • polymer/coacervate core for structural tuning, controlled porosity • functionalized nanoparticles as receptors • protein/polymer corona for tuned biological interaction michael.maas@uni-bremen.de Universität Bremen 23 Ceramic Nanotechnology – L9 www.ceramics.uni-bremen.de Outline • Ultra EverDry • Ferrofluids • Photocatalytic Titiania • Introduction: Microcapsules • Colloidosomes • Coacervation Mediated Mineralization • Carbon Based Nanomaterials michael.maas@uni-bremen.de Universität Bremen 24 Ceramic Nanotechnology – L9 www.ceramics.uni-bremen.de ! Colloidosomes: Overview Definition: Microcapsules with nanoparticle shells Advantages: • Tunable porosity " selective permeability • Range of possible building blocks • Tunable size • Monodisperse Known methods: • Based on polymer beads that are sintered at elevated temperatures • Additional polymers for gelled cores or reinforced shells • Huge colloidosomes (10 – 100 µm) Dinsmore, A. D.; Hsu, M. F.; Nikolaides, M. G.; Marquez, M.; Bausch, A. R.; Weitz, D. A. Science 2002, 298, 1006 –1009. michael.maas@uni-bremen.de Universität Bremen 25 Ceramic Nanotechnology – L9 www.ceramics.uni-bremen.de ! Colloidosome Preparation Colloidosome assembly works best with nanoparticles and surfactants with the same charge! SiO2 + stearic acid Al2O3 + stearyl amine Bollhorst T., Grieb, T., Rosenaur,
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages57 Page
-
File Size-