Superconductivity and BCS Theory I. Eremin, Max-Planck Institut für Physik komplexer Systeme, Dresden, Germany Institut für Mathematische/Theoretische Physik, TU-Braunschweig, Germany Introduction Electron-phonon interaction, Cooper pairs BCS wave function, energy gap and quasiparticle states Predictions of the BCS theory Limits of the BCS gap equation: strong coupling effects I. Eremin, MPIPKS Introduction: conductivity in a metal • Drude theory: metals are good electrical conductors because electrons can move nearly freely between the atoms in solids 2 ne τ n - density of conduction electrons, m is an effective mass of σ = conduction electrons, and τ - average lifetime for the free motion m of electrons between collision with impurities, other electrons, etc m (T) ~ T 2 ~ T 5 ρ = σ −1 = τ −1 ne2 ⇒⇒ −1 −1 −1 −1 τ =τ imp +τ el−el +τ el− ph 2 5 ρ = ρ0 + aT + bT +... • firstly observed in mercury (Hg) below4Kby Kamerlingh Onnes in 1911 I. Eremin, MPIPKS Introduction: Superconducting Materials Element Tc (K) Nb 9.25 Pt 0.0019 Hg 4.2 Nb3Sn 18 Nb3Ge 23 • common feature of many elements I. Eremin, MPIPKS Introduction: Superconducting Materials Material Tc (K) HgBa2Ca2Cu3O8+δ 138 YBa Cu O 92 High-Tc layered cuprates 2 3 7 (1986) Bednorz Müller { La Sr CuO 39 1.85 0.15 4 Borocarbide superconductors YNi B C 17 { 2 2 MgB 38 discovered in 2001 { 2 CeCu2Si2 0.65 Heavy-fermion superconductors { UPt 0.5 3 Na0.3CoO2-1.3H2O 5 Possible triplet superconductors { Sr2RuO4 1.5 I. Eremin, MPIPKS Introduction: Basic Facts ⇒ Meissner-Ochsenfeld Effect What does it mean to have ρ =0 ? 1) E = 0, j is finite inside all points of superconductors Ε = ρ j ∂B 2) From the Maxwell equation: ∇×E = − = 0 ∂t • Below Tc the magnetic field does not penetrate into superconductor (if we start from B=0 in the normal state) • if above Tc there some magnetic field B ≠ 0, then below Tc it is expelled out of the system ⇒ Meissner effect Superconductors are perfect diamagnets! I. Eremin, MPIPKS Introduction: Basic Facts ⇒ Type I and type II superconductivity What happens for the large magnetic field ? Magnetic field enters in the form of vortices (Hc1 < H < Hc2) Abrikosov •in type I superconductor the B field remains zero until suddenly the superconductivity is destroyed, Hc •in type II superconductor there are two critical fields, Hc1 and Hc2 I. Eremin, MPIPKS Microscipic BCS Theory of Superconductivity First truly microscopic theory of superconductivity! (Bardeen-Cooper-Schrieffer 1957) Three major insights: (i) The effective forces between electrons can sometimes be attractive in a solid rather than repulsive (ii) „Cooper problem“ ⇒ two electrons outside of an occupied Fermi surface form a stable pair bound state, and this is true however weak the attractive force (iii) Schrieffer constructed a many-particle wave function which all the electrons near the Fermi surface are paired up I. Eremin, MPIPKS BCS theory: the electron-electron interaction (i) Bare electrons repel each other with electrostatic potential: e2 V (r − r') = 4πε0 | r − r'| In a metal we are dealing with quasiparticles (electron with surrounding exchange-correlated hole) e2 V (r − r') = e−|r−r'|/ rTF 4πε0 | r − r'| Thomas-Fermi screening rTF reduces substantially the repulsive force I. Eremin, MPIPKS BCS theory: the electron-phonon interaction (Frölich 1950) (i) Electrons move in a solid in the field of positively charged ions due to vibrations the ion positions at Ri will be displaced by δRi Such a displacement means a creation of phonons ⇒ a set of quantum harmonic oscillators Modulation of the charge density and the effective potential V1(r) for the electrons I. Eremin, MPIPKS BCS theory: the electron-phonon interaction (Frölich 1950) (i) ∂V (r) 1 with wavelength 2π/q δ V1(r) = ∑ δ Ri i ∂Ri a scattering of 1 electron Ψnk (r) ⇒ Ψn'k−q (r) with emission of phonon a scattering of 2 electron Ψmk (r) ⇒ Ψm'k+q (r) with absorption of phonon I. Eremin, MPIPKS BCS theory: the electron-phonon interaction (Frölich 1950) (i) Effective interaction of electrons due to exchange of phonons 2 1 Veff (q,ω) = gqλ 2 2 ω −ωqλ m g is a constant of electron-phonon interaction ~ ⇒ small number qλ M ωqλ is a phonon frequency I. Eremin, MPIPKS BCS theory: the electron-phonon interaction (Frölich 1950) (i) Effective interaction of electrons due to exchange of phonons 2 1 Veff (ω) = geff 2 2 after averaging ω −ωD • geff is an effective constant of electron-phonon Attraction! interaction • ωD is a typical Debye phonon frequency For ω < ω D and low temperatures 2 Veff (ω) = − geff , ω < ωD ε −ε < ω k i F h D ξ coherence length I. Eremin, MPIPKS BCS theory: Cooper problem (ii) What is the effect of the attraction just for a single pair of electrons outside of Fermi sea: Trial two-electron wave function Ψ(r ,σ ,r ,σ ) = eik cmRcmϕ(r − r )χ spin 1 1 2 2 1 2 σ1 ,σ 2 Ψ(r1,σ1,r2 ,σ 2 ) = −Ψ(r2 ,σ 2 ,r1,σ1) 1) kcm =0, Cooper pair without center of mass motion 2) Spin wave function 1 χ spin = ↑↓ − ↑↓ Spin singlet (S=0) σ1 ,σ 2 ( ) 2 ⎧ ↑↑ ⎪ ⎪ 1 Spin triplet (S=1) χ spin = ↑↓ + ↑↓ σ1 ,σ 2 ⎨ () ⎪ 2 ⎪ ⎩ ↓↓ I. Eremin, MPIPKS BCS theory: Cooper problem (ii) 3) Orbital part of the wave function Spin singlet ϕ(r1 − r2 ) = +ϕ(r2 − r1) even function Spin triplet ϕ(r1 − r2 ) = −ϕ(r2 − r1) odd function ϕ(r1 − r2 ) = f (| r1 − r2 |)Υlm (θ,φ) BCS: For the spin singlet state and s-wave symmetry a subsititon of the trial wave function in Schrödinger equation HΨ = EΨ −1/ λ 2 − E = 2hωDe , λ = geff N(ε F ) λ - electron-phonon coupling parameter Bound state exists independent of the value of λ !!! I. Eremin, MPIPKS BCS wave function (iii) Whole Fermi surface would be unstable to the creation of such pairs Pair creation operator ˆ + + + Pk = ck↑c−k↓ Pˆ ,Pˆ + ≠ 1 Pˆ + ,Pˆ + = 0 ˆ + 2 [ k k ] [ k k ] (Pk ) = 0 Cooper pairs are not bosons! * * + ΨBCS = ∏(uk + vk Pk ) 0 k uk and vk are the normalizing coefficients (parameters) u 2 + v 2 =1 ΨBCS ΨBCS =1 k k I. Eremin, MPIPKS BCS wave function: variational apporach at T=0 (iii) ˆ ˆ minimize E = ΨBCS H ΨBCS with N = const ˆ + 2 + + H = ∑ε kckσ ckσ − geff ∑ck↑c−k↓c−k'↓ck'↑ k,σ k,k' 2 2 2 * * E = ∑ε k (vk − uk +1)− geff ∑vk vk'uk'uk k k,k' 2 2 N = ∑ (vk − uk +1) k 2 2 uk + vk =1 I. Eremin, MPIPKS BCS wave function: variational approach at T=0 (iii) Minimization with Lagrange multipliers μ and Ek ∂E ∂N 0 = − μ + E u * * k k E u = (ε − μ)u + Δ v ∂uk ∂uk k k k k k * ∂E ∂N Ekvk = Δ uk − ()ε k − μ vk 0 = * − μ * + Ekvk ∂vk ∂vk 2 * BCS gap parameter Δ = geff ∑ukvk k 2 1 ⎛ ε − μ ⎞ ⎜ k ⎟ uk = ⎜1+ ⎟ 2 2 2 ⎝ Ek ⎠ ± Ek = ± ()ε k − μ + Δ 2 1 ⎛ ε − μ ⎞ ⎜ k ⎟ vk = ⎜1− ⎟ 2 ⎝ Ek ⎠ I. Eremin, MPIPKS BCS energy gap and quasiparticle states (iii) 2 Δ Δ = g −1/ λ eff ∑ Δ = 2hωDe k 2Ek equals to the binding energy of a single Cooper pair at T=0! What about the excited states and finite temperatures? Consider Ψ BCS and small excitations relative to this state + + + + + + ck↑c−k↓c−k'↓ck'↑ ≈ ck↑c−k↓ c−k'↓ck'↑ + ck↑c−k↓ c−k'↓ck'↑ ˆ + * + + H = ∑(ε k − μ)ckσ ckσ − ∑(Δ c−k↓ck↑ + Δck↑c−k↓ ) k,σ k I. Eremin, MPIPKS BCS energy gap and quasiparticle states + Unitary transformations: ˆ ˆ U HU = H diag * ⎛ uk vk ⎞ 2 2 U = ⎜ ⎟ ± Ek = ± ()ε k − μ + Δ ⎜ * ⎟ − vk uk ⎝ ⎠ u and v are Bogolyubov- Valatin coeffiecents: new pair of operators: * * + bk↑ = uk ck↑ − vkc−k↓ + + b−k↓ = vk ck↑ + uk c−k↓ ˆ + + H diag = ∑ Ek (bk↑bk↑ + b−k↓b−k↓ ) k What is the physical meaning of these operators? I. Eremin, MPIPKS BCS quasiparticle states 1) b operators are fermionic: + + + {bkσ ,bk'σ '}= δkk'δσσ ' , {bkσ ,bk'σ '}= 0, {bk'σ ' ,bk'σ '}= 0 2) b „particles“ are not present in the ground state: bk↑ ΨBCS = 0 3) The excited state corresponds to adding 1,2, ... of the new quasiparticles to this state * * + bk↑ = ukck↑ − vk c−k↓ 4) b –quasiparticle is superposition of an electron and a hole 5) the energy gap is 2Δ I. Eremin, MPIPKS BCS gap equation at finite temperature: Tc + + bk↑bk↑ = f (Ek ), b−k↓b−k↓ =1− f (Ek ) allows to determine temperature dependence of the gap 2 2 Δ ⎛ E ⎞ Δ = geff c c k ∑ −k↓ k↑ Δ = geff tanh⎜ ⎟ k ∑ ⎜ ⎟ k 2Ek ⎝ 2kBT ⎠ 2Δ()T = 0 = 3.52kBTc kBTc =1.13hωD exp(−1/ λ) 1 − 2 isotope effect ! Tc ∝ M 1 2 Condensation energy Econd ≈ ∑[]ε k − Ek = − N()ε F Δ k 2 I. Eremin, MPIPKS Some thermodynamic properties 1) Specific heat discontinuity at T=Tc 2nd order phase transiton ⇒ discontinuity of specific heat ΔC C − C = n =1.43 Cn Cn T =Tc T =Tc 2) Key quantity: density of states N(E) = 2∑δ (ω − Ek ) k I. Eremin, MPIPKS Predictions of the BCS theory 1) Paramagnetic susceptibility of the conduction electrons M = χH χ(q → 0,ω → 0)∝ N(ε F ) → n↑ − n↓ spin of Cooper Pairs S=0 1 2 ∝ []N()ε effect of coherence F factors T1T I. Eremin, MPIPKS Predictions of the BCS theory 2) Andreev scattering: electron in a metal ε k −ε F < Δ e and h are exactly time reversed − e ⇒ e k ⇒ − k σ ⇒ −σ a) an electron will be reflected at the interface b) An electron will combine another electron and form Cooper pair I.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages30 Page
-
File Size-